ORIGINAL PAPER

Sciendo © 2019 Wu Yi-Heng *et al.* This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License (CC BY-NC-ND 3.0).

Investigation of the level structure of ⁹⁰Nb nucleus using the shell model

Wu Yi-Heng, Yang Dong, Ma Ke-Yan, Luo Peng-Wei

Abstract. Shell model calculations have been carried out for ⁹⁰Nb nucleus with the model space in which the valence protons occupy the $f_{5/2}$, $p_{3/2}$, $p_{1/2}$, and $g_{9/2}$ orbitals and the valence neutrons occupy the $p_{1/2}$, $g_{9/2}$, $d_{5/2}$, and $g_{7/2}$ orbitals. According to the calculated results, the negative parity is from the contribution of the proton of the f_{5/2}, $p_{3/2}$, and $p_{1/2}$ orbits. The moderate spin states of ⁹⁰Nb are mainly due to the excitation of protons from the f_{5/2} and $p_{3/2}$ orbits to the $p_{1/2}$ and $g_{9/2}$ orbits across the Z = 38 subshell closure, and the high spin states arise from the excitation of a single neutron from the $g_{9/2}$ orbit into the $d_{5/2}$ orbit across the N = 50 shell closure.

Keywords: high spin state • level structure • proton excitation • shell model

Wu Yi-Heng[™] School of Physics and Electronic Engineering of An Qing Normal University No. 1318, Jixian North Road, Anqing city Anhui, 246133, P. R. China E-mail: wuyiheng@aqnu.edu.cn

Yang Dong, Ma Ke-Yan College of Physics of Jilin University No. 2699 Qianjin Street, Changchun city Jilin, 130012, P. R. China

Luo Peng-Wei School of Physics of Sun Yat-sen University No. 135, Xingang Xi Road, Guangzhou city Gungdong, 510275, P. R. China

Received: 6 March 2019 Accepted: 27 August 2019 Nuclei in the $A \sim 90$ mass region provide unique opportunity to investigate the influence of Z = 38subshell closure and N = 50 shell closure on the level structures. A vast number of studies have showed that the level structures of nuclei in the $A \sim 90$ mass region could be well described within the shell model framework. For example, the level structures of Sr, Y, Zr, Nb, Mo, Tc, Ru, and Rh nuclei have been well described within the shell model framework [1-11]. In those nuclei, the high spin states arise from the excitation of a single $g_{9/2}$ neutron into the $d_{5/2}$ orbit across the N = 50 shell closure. In particular, the N = 49 isotones in the A~90 mass region are of great significance for providing suitable examples for testing the residual interactions of the spherical shell model and studying the mechanism of particle--hole excitations. From this point, 90Nb seemed to be an ideal candidate for such study to improve the understanding the level structures of nuclei in the $A \sim 90$ mass region.

For the ⁹⁰Nb nucleus, semi-empirical shell model (SESM) has been used to study the level structure of ⁹⁰Nb in Ref. [12], but the level energies and the configurations of the 13^+_{2} , 15^+_{1} , 9^- , 17^- , and 18^- states in Fig. 1 were not provided for the absence of the level information in neighboring nuclei. Moreover, the configurations of 10^+ and 15^- states should be discussed again. In Ref. [12], the 10^+ state degenerated by the 2063 keV transition, which was suggested as the $\pi g_{9/2} \otimes v g_{9/2}$ configuration with a 2^+ quadrupole phonon state of 90 Zr core and the 15^- state degenerated by the 1904 keV transition, which was suggested as the configuration with $\pi g_{9/2}$

 $\otimes v(f_{5/2}^{-1}g_{7/2}^{-1}g_{7/2})$. However, such gamma transitions with $E_{\gamma} \sim 2$ MeV in the other Nb isotopes and ⁹⁰Nb isotones at the moderate spins are usually suggested to arise from the excitation of protons from $f_{5/2}$, $p_{3/2}$, and $p_{1/2}$ orbits [6–8]. Hence, the configurations of 10^+ , 11^+ , and 15^- states should be associated with the excitation of protons from $f_{5/2}$, $p_{3/2}$, and $p_{1/2}$ orbits. Furthermore, the high spin states of 17^- and 18^- were not discussed in Ref. [12], which could probably involved the neutron excitation across the N = 50 shell closure according to the systematic analysis.

In the present work, the level structure of ⁹⁰Nb is investigated by the shell model with a large configuration space and taking the neutron excitation across the N = 50 shell closure into consideration. The calculation adopts the NuShellx code with the GWB model space and the GWBXG residual interaction [13]. The model space utilized in the calculation consists of four proton orbits (f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2}) and six neutron orbits $(p_{1/2}, g_{3/2}, d_{5/2}, g_{7/2}, d_{3/2}, s_{1/2})$. It takes the ⁶⁶Ni (Z = 28, N = 38) nucleus as the core. The 90Nb nucleus has 13 valence protons and 11 valence neutrons in the considered configuration space. Considering the computational difficulties, truncations were employed in our calculation based on the analogous scheme introduced in Ref. [8]. We restrict one neutron lifted from the $g_{9/2}$ orbital into the $d_{5/2}$ or $g_{7/2}$ orbital and neglect the excitation of neutron from the $g_{9/2}$ orbital to the $s_{1/2}$ and $d_{3/2}$ orbits. The single particle energies (SPEs) corresponding to the model space are set as the same in Refs. [7, 14, 15]:

$$\begin{split} \epsilon^{\pi}_{f_{5/2}} &= -5.322 \text{ MeV} \quad \epsilon^{\pi}_{p_{5/2}} &= -6.144 \text{ MeV} \\ \epsilon^{\pi}_{p_{1/2}} &= -3.941 \text{ MeV} \quad \epsilon^{\pi}_{g_{5/2}} &= -1.250 \text{ MeV} \\ \epsilon^{\nu}_{p_{1/2}} &= -0.696 \text{ MeV} \quad \epsilon^{\pi}_{g_{5/2}} &= -2.597 \text{ MeV} \\ \epsilon^{\nu}_{g_{5/2}} &= 1.830 \text{ MeV} \quad \epsilon^{\nu}_{g_{7/2}} &= 5.159 \text{ MeV} \end{split}$$

The comparison of the level scheme calculated by this work and that from the experiment is shown in Fig. 1. The detailed calculation results are presented in Table 1. For the positive parity states, according to the present shell model calculation, the main configurations of the 8⁺ and 9⁺ states are assigned

Fig. 1. Comparison of the experimental excitation energies in ⁹⁰Nb with the shell model calculations, where the experimental excitation energies are taken from Ref. [12].

Table 1. Main partitions of configurations for ⁹⁰Nb within the GWB configuration space. The configurations for a particular state would be composed of several partitions. Each partition is of the form $P = \pi[p(1), p(2), p(3), p(4)] \otimes v[n(1), n(2), n(3), n(4)]$, where p(i) represents the number of valence protons occupying the f_{5/2}, p_{3/2}, p_{1/2}, and g_{9/2} orbits, and n(j) represents the number of valence neutrons in the (p_{1/2}, g_{9/2}, d_{3/2}, and g_{7/2} orbits, respectively), where the experimental excitation energies are taken from Ref. [12]

<i>Ι</i> π ħ	$E_{ m exp}$ [keV]	$E_{\rm cal}$ [keV]	Wave function $\pi \otimes v$	Partition [%]
8+	0	0	6403⊗2900 6421⊗2900	26 16
9+	813	756	6403⊗2900 6421⊗2900	30 15
10+	2063	2219	5413⊗2900 5323⊗2900	63 7
11+	2689	2351	5413⊗2900 5323⊗2900	66 9
12+	2817	2940	5413⊗2900 4423⊗2900	51 10
13 ⁺ ₁	3314	3001	6403⊗2900 4423⊗2900 5413⊗2900	40 19 12
13^{+}_{2}	3496	3181	5413⊗2900 5323⊗2900	75 10
14+	3974	3695	$6403 \otimes 2900$ $4423 \otimes 2900$ $5413 \otimes 2900$	39 18 17
15^{+}_{1}	4067	3875	5413⊗2900 5323⊗2900	78 10
15 ⁺ ₂	4420	4200	$6403 \otimes 2900$ $4423 \otimes 2900$ $5413 \otimes 2900$	47 16 11
17+	5761	5410	5413⊗2900 5323⊗2900	72 15
18+	6145	5725	5413⊗2900 5323⊗2900	76 14
9-	1809	1786	6412⊗2900 5422⊗2900	36 24
11-	1880	2105	6421⊗2900 5422⊗2900	72 7
12-	2486	2708	$6412 \otimes 2900$ $5422 \otimes 2900$	66 10
13-	3073	2821	5404⊗2900 5422⊗2900 4414⊗2900	48 20 9
14-	3670	3642	5404⊗2900 5422⊗2900	46 11
15-	5574	5270	4414⊗2900 5314⊗2900 5422⊗2900	34 13 12
17-	7348	7415	4414⊗2810 5404⊗2810	34 21
18-	8091	8074	$5404 \otimes 2810$ $4414 \otimes 2810$ $5422 \otimes 2900$	29 18 12

as $\pi g_{9/2}^3 \otimes v g_{9/2}^{-1}$ mixed with $\pi(p_{1/2}g_{9/2}^1) \otimes v g_{9/2}^{-1}$. Hence there are three valence protons occupying the $p_{1/2}$ and $g_{9/2}$ orbitals above the Z = 38 subshell closure for the low spin states of ⁹⁰Nb. The 10⁺, 11⁺, and 12⁺ states are all degenerated by the gamma transitions with $E_{\gamma} \sim 2$ MeV. For the $A \sim 90$ mass region, the presence of the gamma transitions with $E_{\gamma} \sim 2 \text{ MeV}$ implies the excitation of protons across the Z = 38subshell closure at moderate spin states. Indeed as the calculation results, one valence proton is excited from the $f_{5/2}$ orbitals to the $p_{1/2}$ orbital for the above three states. Hence their main configurations are assigned as $\pi(f_{5/2}^{-1}p_{1/2}g_{9/2}^{-1}) \otimes vg_{9/2}^{-1}$. With the increase of the excitation energy and angular momentum, the ratio of $\pi(f_{5/2}^{-1}p_{1/2}g_{9/2}^3) \otimes vg_{9/2}^{-1}$ in the wave function significantly increases in the 13^+_1 to 18^+ states with the excitation energy of about 3 MeV to about 6 MeV. Moreover, more protons are excited across the Z = 38 subshell closure. The 13^{+}_{1} , 14^{+}_{2} , 15^{+}_{2} , 17⁺, and 18⁺ states have a significant portion of $\pi(f_{5/2}^{-1}p_{1/2}^2g_{9/2}^3) \otimes vg_{9/2}^{-1}$ and $\pi(f_{5/2}^{-1}p_{3/2}^{-1}g_{9/2}^3) \otimes vg_{9/2}^{-1}$ in their wave functions. For the positive parity states of ⁹⁰Nb, the neutron excitation from the $g_{3/2}$ into the $d_{5/2}$ orbit across the N = 50 shell closure is not observed below the excitation of about 6 MeV, and all these states arise from the excitation of one or two protons from the $f_{3/2}$ and $p_{3/2}$ orbits to the $p_{1/2}$ orbits across the Z = 38 subshell closure.

Considering the negative parity states, the excitation energies of the 9⁻, 11⁻, and 12⁻ states is about 2 MeV. Their main configuration is $\pi(p_{1/2}g_{9/2}^3) \otimes vg_{9/2}^{-1}$, where the $p_{1/2}$ orbit provides the negative parity. It is somehow strange that such a high excitation energy for these states is assigned as such wave functions. The reason for such a high excitation energy could be the coupling way of the last three valence protons. There are also a small contribution of one proton excitation across the Z = 38subshell closure for them with the configuration of $\pi(f_{5/2}^{-1}p_{1/2}^2g_{9/2}^3) \otimes vg_{9/2}^{-1}$. For the 13⁻ and 14⁻ states, they have the dominate one proton excitation configuration as $\pi(f_{5/2}^{-1}p_{1/2}^{2}g_{9/2}^{3}) \otimes vg_{9/2}^{-1}$ and $\pi(f_{5/2}^{-1}g_{9/2}^{4}) \otimes vg_{9/2}^{-1}$. One more proton is excited across the Z = 38subshell closure from the $f_{3/2}$ and $p_{3/2}$ orbits to the $p_{1/2}$ and $g_{3/2}$ orbits for the 15⁻ state, as its excitation energy reaches 5 MeV. For the 17⁻ and 18⁻ states, besides the excitation of the proton, there is also a single neutron excited from the $g_{3/2}$ orbit into the $d_{5/2}$ orbit across the N = 50 closed shell and their main wave functions are $\pi(f_{5/2}^{-2}p_{1/2}^{-1}g_{9/2}^{4})\otimes vg_{9/2}^{-1}d_{5/2}$ and $\pi(f_{5/2}^{-1}g_{9/2}^{4})\otimes vg_{9/2}^{-2}d_{5/2}$. For all the negative parities, the negative parity comes from the contribution of the $f_{3/2}$, $p_{3/2}$, and $p_{1/2}$ proton orbits. As discussed above, the present level structure of ⁹⁰Nb is generated via three different mechanisms: (a) coupling of the last three valence protons from the $p_{1/2}$ and $g_{9/2}$ orbits above the Z = 38 subshell closure, (b) the excitation of protons from the $f_{5/2}$ and $p_{3/2}$ orbits to the $p_{1/2}$ and $g_{9/2}$ orbits across the Z = 38 subshell closure, and (c) the excitation of a single neutron from the $g_{9/2}$ into the $d_{5/2}$ orbit across the N = 50 closed shell.

In summary, the shell model calculations for the ⁹⁰Nb nucleus are performed using a configuration space of $\pi(f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2}) v(p_{1/2}, g_{1/2}, d_{5/2}, g_{7/2})$.

The results are compared with the experimental values, and the level structure is well reproduced. It is confirmed that the excitation of protons across the Z = 38 subshell closure and one neutron across the N = 50 closed shell are essential for the description of the level structure of ⁹⁰Nb. Furthermore, more experiments are needed to explore higher spin states, which investigate neutron excitations across the N = 50 closed shell.

Acknowledgments. This work is supported by the National Natural Science Foundation of China under Grant Nos. 11775098 and 11405072, Jilin Scientific and Technological Development Program Nos. 20190201137JC and 20180522019JH, the 13th Five-Year Plan of Scientific Research of Jilin Province No. JJKH20180117KJ, and China Postdoctoral Science Foundation Nos. 2015M571354 and 2013M541285, and the Key Programme of the Education Department of Anhui Province under Grant No. KJ2017A369.

References

- Pattabiraman, N. S., Chintalapudi, S. N., Ghugre, S. S., Tirumala Rao, B. V., Raju, M. L. N., Seshi Reddy, T., Joshi, P. K., Palit, R., & Jain, H. C. (2002). Level structure of ⁹² Mo at high angular momentum: Evidence for Z=38, N=50 core excitation. *Phys. Rev. C*, 65, 044324. https://doi.org/10.1103/Phys-RevC.65.044324.
- Rainovski, G., Schwengner, R., Schilling, K. D., Wagner, A., Jungclaus, A., Galindo, E., Thelen, O., Napoli, D. R., Ur, C. A., de Angelis, G., Axiotis, M., Gadea, A., Marginean, N., Martinez, T., & Kröll, Th. (2002). High-spin structure of the spherical nucleus ⁹⁰Y. *Phys. Rev. C*, 65, 044327. https://doi.org/10.1103/ PhysRevC.65.044327.
- Roth, H. A., Arnell, S. E., Foltescu, D., Skeppstedt, Ö., Blomqvist, J., Nilsson, A., Kuroyanagi, T., Mitarai, S., & Nyberg, J. (1994). Gaps in the yrast level structure of the N=50 isotones ⁹³Tc, ⁹⁴Ru, and ⁹⁵Rh at high angular momentum. *Phys. Rev. C*, 50(3), 1330. https://doi.org/10.1103/PhysRevC.50.1330.
- Stefanova, E. A., Schwengner, R., Rainovski, G., Schilling, K. D., Wagner, A., Dönau, F., Galindo, E., Jungclaus, A., Lieb, K. P., Thelen, O., Eberth, J., Napoli, D. R., Ur, C. A., de Angelis, G., Axiotis, M., Gadea, A., Marginean, N., Martinez, T., Kröll, Th., & Kutsarova, T. (2001). Structure of high-spin states in ⁸⁹Sr and ⁹⁰Sr. *Phys. Rev. C*, 63, 064315. https://doi. org/10.1103/PhysRevC.63.064315.
- Ghugre, S. S., Naguleswaran, S., Bhowmik, R. K., Garg, U., Patel, S. B., Reviol, W., & Walpe, J. C. (1995). High-spin states in ⁹⁴Tc and the shell-model interpretation. *Phys. Rev. C*, *51*, 2809. https://doi. org/10.1103/PhysRevC.51.2809.
- Wu, Yi-Heng., Lu, Jing-Bin., Luo, Peng-Wei., Li, Guang-Sheng., Li, Hong-Wei., Wu, Xiao-Guang., He, Chuang-Ye., Zheng, Yun., Ma, Ke-Yan., Yang, Dong., Li, Cong-Bo., Hu, Shi-Peng., Liu, Jia-Jian., Wang, Jin-Long., Yao, Shun-He., Chen, Qi-Ming., & Zhong, Jian. (2014). High-spin states in the odd-odd nucleus

⁹²Nb. *Chin. Phys. Lett.*, *31*(4), 042101. https://doi. org/10.1088/0256-307X/31/4/042102.

- Luo, P. W., Wu, X. G., Sun, H. B., Li, G. S., He, C. Y., Zheng, Y., Li, C. B., Hu, S. P., Wu, Y. H., Li, H. W., Liu, J. J., Wang, J. L., Yao, S. H., & Edwards, S. A. (2014). High-spin level structure of the semi-magic nucleus ⁹¹Nb. *Phys. Rev. C*, 89(3), 034318. https:// doi.org/10.1103/PhysRevC.89.034318.
- Arnell, S. E., Foltescu, D., Roth, H. A., Skeppstedt, Ö., Blomqvist, J., Nilsson, A., Kuroyanagi, T., Mitarai, S., & Nyberg, J. (1994). Yrast level structure of the neutron deficient N=49 isotones ⁹²Tc, ⁹³Ru, ⁹⁴Rh, and ⁹⁵Pd up to high angular momentum. *Phys. Rev. C*, 49(1), 51. https://doi.org/10.1103/PhysRevC.49.51.
- Zhao, Guang-yi., Li, Guang-sheng., Wu, Xiao-guang., Liu, Xiang-an., Wen, Shu-xian., Lu, Jing-bin., Yuan, Guan-jun., & Yang, Chun-xiang. (1999). Structure of high spin states in ⁸⁷Zr. *Chin. Phys. Lett.*,16(5), 345.
- He, Chuang-Ye., Cui, Xing-Zhu., Zhu, Li-Hua., Wu, Xiao-Guang., Li, Guang-Sheng., Liu, Ying., Wang, Zhi-Min., Wen, Shu-Xian., Sun, Hui-Bin., Ma, Rui-Gang., & Yang, Chun-Xiang. (2010). Shell structures in ⁹¹Nb. *Chin. Phys. Lett.*, 27, 102104. https://doi. org/10.1088/0256-307X/27/10/102104.

- Ray, S., Pattabiraman, N. S., Goswami, R., Ghugre, S. S., Sinha, A. K., & Garg, U. (2004). Experimental study of nuclear structure of ⁹¹Mo at high spin. *Phys. Rev. C*, 69(5), 054314. https://doi.org/10.1103/Phys-RevC.69.054314.
- Cui, X. Z., Zhu, L. H., Wu, X. G., Wang, Z. M., He, C. Y., Liu, Y., Li, G. S., Wen, S. X., Zhang, Z. L., Meng, R., Ma, R. G., Luo, P., Zheng, Y., Ndontchueng, M. M., Huo, J. D., & Yang, C. X. (2005). High-spin states and shell structure of the odd-odd nucleus ⁹⁰Nb. *Phys. Rev. C*, 72(4), 044322. https://doi.org/10.1103/ PhysRevC.72.044322.
- Brown, B. A., & Rae, W. D. M. (2007). NuShell@ MSU. MSU-NSCL Report (unpublished). Michigan State University, National Superconducting Cyclotron Laboratory.
- Chang-hua, Zhang., Shun-jin, Wang., & Jin-nan, Gu. (1999). Shell model studies of nuclei with A=92–98. *Phys. Rev. C*, 60(5), 054316. https://doi.org/10.1103/ PhysRevC.60.054316.
- Ghugre, S. S., & Datta, S. K. (1995). Shell model study of the high spin states in the N=50 isotones ⁹²Mo, ⁹³Tc, ⁹⁴Ru, and ⁹⁵Rh. *Phys. Rev. C*, 52(4), 1881. https://doi.org/10.1103/PhysRevC.52.1881.