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The method of nonlinear constants B/A and C/A determination is discussed. 1t bases on
comparison oj experimental results oj acoustic signal propagation with results oj theoretical
investigation oj this problem. 1t is shown, that this problem, in general case, is ill-posed. So
we use methods oj ill-posed problem solution regularization. The values oj the constants,
which were extracted using this method, are in good accordance with estimations by other
authors.

INTRODUCTION

A construction of solutions for problems of a continuous medium state perturbation is
traditionally based on equations of hydrodynamics type. One of the important questions
arising when one complete the equations of hydrodynamics set is a choice of the (caloric and
thermic) equations ofstate [1]. More precisely a question is: how many and what equations of
state correspond to the considered real medium? The equations of state of ideal gas form are
frequently used. However, there is a serious contradiction. Viscosity and thermal streams for
ideal gas are equal to zero, and the equations of hydrodynamics become inconsistent. The
empirical equations of state for a real gas (for example, the equations of Van der Waals,
Bertlo, Diterichi and others) also do not solve the problem. First, all of them contain a set of
constants, which empirical definition or analytical calculation represents separate, rather
uneasy problem. Second, all of them either works in narrow enough range of temperatures
and pressure, or are too complicated. Especially, for liquids, even for most interesting of them
- water up to now it was not possible to pick up the satisfactory equation of state.

159

mailto:leble@mif.pg.gda.pl
mailto:verd@tphys.albertina.ru


HYDROACOUSTICS Volume 6

The question on correctness of a choice of the equations of state becomes important when a
state of a fluid goes up to a critical or phase transition points. It also relates the case of
account of the physical effects connected with nonlinearity. It becomes elear, that nonlinear
properties of fluids and their detail displays basically would be described, if exact equations
of state of the medium under consideration were known. Unfortunately, in the majority of
cases these equations till now are not established [2].
Accordingly, dependence of the pressure and the internal energy of a thennodynamic system
on temperature and den sity , it is said the ealorie and the thennie equations of state are
independent despite a connection by a differential relation. If a system is simple, that is the
system with a constant number of partieles which equilibrium condition is defined only by the
only external parameter (say, - density p) and the temperature T, the thermic and the caloric
equations look correspondingly:

P=P(p,T), U=U(p,T).
If the caloric and the thermic equations of state are known, it is possible to define all
thermodynamic properties of systems. However, to deduce the equations of state in the
thermodynamics frameworks is impossible. Originally they were established by experiment,
the first, most simple and best known is the thermal equation - the equation of state for ideal
gas - the Clapeyron - Mendeleev equation. However, the equation of ideal gas, describes
satisfactory behavior of real gases in a narrow rang e of the external parameter values. It is
because the equation for ideal gas does not take into account presence of forces of interaction
between molecules and their internal structure.
With the purpose to bypass this lack, attempts to pick up the empirical equations were
undertaken. Probably the most well-known one is the (thermic) empirie equation of Van der
Waals. The further search has resulted in numerous attempts to pick up more exact equations.
From the simple equations with two empirical parameters quite go od results give equations of
Diterichi and Bertlo. From the equations using five individual constants, the most successful
seems to be the equation of Bitty - Bridgeman.
During some time it was applied to draw up of tab les for real gases in wide range of pressure,
volume and temperature. "Individual" constants in the empirieal equations for different fluids
have, generally speaking, individual values. Now the most exact tables of properties of real
gases and for caIculation of thermodynamic functions of gases use the equation Benedict -
Webb - Roobin with eleven individual parameters.
For non-ideal gases to the present moment it is offered more than 150 empirical thermal
equations of state.
Kammerling-Onnes and Kees, not aspiring to minimize number of individual parameters,
were first who have offered the equation of state as series in powers of molecular volume
V-lor pressure P

PV = RT(l + B2 (T) + BJ (;) + ...) ,
V V-

(1)

Where B n eT) is a virial factor. The use of virial equations of state was also allowed to reach
the good agreement with experiment. It is even more important, because the power expansion
in V-I has obtained a reliable theoretical explanation in the frameworks of more general, in
comparison with thermodynamics, statistical physics. Mayer and Bogoliubov derived the
expansion for real gases, in the assumptions, that intermolecular interactions are short-range.
Factors B; thus manage to be calculated theoretically, if a kind of potential of interaction

between molecules is known.
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Thus it becomes elear, why the equations of state of real gas with two individual parameters
are not enough for a good consistency with experiment. Statistical calculation shows, that
presence of free parameters in the equation for energy interactions of molecules results in
occurrence of individual constants in the equations of state.
The physical sense of virial factors B n became elear also. The first one corresponds to ideal
gas in which interaction between molecules is neglected. The second virial factor B2 takes
into account pair interaction between partieles. The third B3 is accordingly, threefold
interaction and so on.
The difficulties connected to a choice of the equation of state, adequately describing a
medium, have resulted in problems of nonlinear acoustics as the thermal equation of state,
usually the equation of state in the form of virial expansion gets out, which for a perturbation
of the pressure looks like:

p _ r; = A( P - Po ) + B ( P - Po J2 + C ( P - Po J3 + ..., (2)
Po 2l Po 6l Po

Here A, B, C - the coefficients of the expansion. The coefficient B/A after Beyer names the
parameter of nonlinearity, it defines the relative contribution of the second order processes in
investigated effects.
History of experimental evaluation of the nonlinear parameter B/A for various fluids totals
more than 35 years. Size parameter in many respects defines many basie features of the
behavior of a medium. In particular, parameter B/A defines characteristic lengths on which
there is a forrnation shock wave. Knowledge of exact value of nonlinear parameter and its
dependence on the temperature appears important in medical physics, for example, an
influence on human bodies.
It is possible to tell, that now effective method of acoustic measurement of the first nonlinear
parameter B/A are developed, giving satisfactory accuracy. Unfortunately, anything similar is
impossible to tell conceming the second parameter nonlinearity C/A, ineluded in (2). This
parameter, obviously, defines the contribution of nonlinearity of the third order in a wave
perturbation of a fluid. Cubic nonlinearity, according to theoretical researches is responsible
such phenomena as self-focusing of an acoustic beam. It is obvious, that quantitative
descriptions of specific effects in many respects are defined by value of constants of the virial
expansion. On the other hand, it allows solving an inverse problem - under known
quantitative characteristics of process to restore values of virial factors.

l. FORMULAS FOR SECOND AND THIRD HARMONICS FROM CIRCULAR
PISTON EMITTER

In works [3,4] forrnulas for the first, second and third harrnonics of acoustic wave were
obtained for perturbations with dimensionless amplitude of pressure n on it and the given
frequency co. These forrnulas allow in principle to calculate nonlinear parameters B/A and
CIA, by comparison amplitudes of harmonics behaviors with appropriate experimental
measurements [6, 7].
Values of nonlinear parameter E and, hence, the parameter BIA

B
E =1+-

2A
may be easily found by comparison of theoretical and experimental curves for the second
harrnonics of the acoustic beam.
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For simplification of comparison of analytical and experimental results we shall present the
diffraction integrals, obtained in [3, 4]. For the first a. and the second ~ harmonics it is
possible to write down:

(3)

where integrals II H12 are equal accordingly

00 ("}.}J
II = JJI(A)Jo(:)I.~)exp ~ o. (4)

and
eJ

f
u; do :

12 = - exp(----+2a.lrocr')--x
o cr-cr' cr-cr'

x 1a.2(cr'I'~')exp(- 2i~,2 )Jo( 4~~' )~'d~'.
° cr-cr' cr-cr'

The diagrams the of integral 12 is given for the second harmonie as a dimensionless function
of the longitudinal eoordinates o on an axis of a beam ~ = ° [4]. For more details about
numerieal scheme and plotting see [5].
Comparing our results and the data from [6, 7], we take the same values of eonstants whieh
were used in the experiments for water: the radiu s a = 23 mm, ka = 97 ,external equilibrium

pressure POD = 258 kPa, equilibrium density of water Po = 997 K~, speed of a sound Co =
M

1492 m/s, temperature ,To = 25 Oc. Whence for the length ofRayleigh it is

'o = k a. 2/2 = 1,12 m. Values of integral 12 and experimental data for < P 2> are glven

below:

(5)

X 1121 < P2 >

0,2 0,034 13,0
The data from [6, 7] are given as the pressure of the Caleulations of the faetor 8 are given
with the seeond harmonie in percentage to peak pressure on the source. value 8 = 3,6 ; while
for nonlinear parameter B/A we obtain

B = 2(8 -I) = 5 2A ' ,
that is in a good agreement with the data of other authors.
For the ealculation of the seeond nonlinear parameter C/A we shall present the expression
from [3, 4] for the third harmonie as, similar to (3)

3 (ka) 2
<Y >= -iD 3 --2-(28 2(ka) 2 13 + (14), (6)

2 A
Where

eJ 00

13 (o ) = f f I I (o ' ,C, )1Jcr ' ,C, )c,C!Sdcr' ,
o o (7)
eJ 00

14(cr) = f f11\cr',~~di;dcr'.
o o
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For evaluation of the numerieal value of the seeond nonlinear parameter CIA we'll use the
data from works [6, 7] for the seeond and third harmonies and ealculations of integrals IJ

and 14 by formulas (7) whieh eomparison allows direetly to establish the value of the
parameter o , describing the eontribution of term with eubie nonlinearity. The parameter o IS

linearly eonneeted with the parameter CIA.

o ='!'[9B .rr .C +6) (7)
6 A 2 A2 A

It is neeessary to take into aeeount, that the funetions determined by integrals (7), are eomplex
and it is neeessary to eompare with experiment the absolute values of the sum of the integrals
whieh are in braekets in the expression for <y> (6).

4 (ka ) 4c 411 J 12+ 8 211412+ 4 (ka ) 2 c 28 [Re( 1 J ) Re( 14 ) + Im(1 J ) Im(14 ) ] =

64 A4
2

= (y 1< PJ > l·9 rr 4 ka
On fig. l the diagram of dependenee of the third harmonie from axial eoordinates a is given.

2. THE CIA PARAMETER EVALUATION AS ILL-POSED PROBLEM AND
REGULARIZA TION

An evaluation of CIA from experiment, me et serious diffieulties arise when trying to
make exaet numerieal determination of the values of I1 /A, whieh are eonneeted to diffieulties
of experimental definition of values of peak pressure on a souree and internal pressure in
liquid. In ealculations of the dimensionless parameter c we have estimated the speeified
attitude as 8,6'104. This gives values of parameter B/A, being in rather go od agreements with
experiment and it verifies formulas we use.
For the definition of the parameter CIA it is possible to compare the theoretical and
experimental [6,7] diagrams for the third harmonie in two points. Thus the system of two
algebraie equations of the seeond order for parameters c and o will be obtained. However
there will appear above mentioned diffieulties of eomparison, and also a signifieant relative
error in amplitudes definition. It makes sueh simple approaeh unstable to the speeified error
values. Henee beeause the seeond harmonie gives the mueh greater eontribution, we arrive at
the typieal incorrect problem.

P3
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o 0.020.040.060.08 0.1 0.120.14 0.16 0'S\~&2

Fig. l. ka = 97 . Dependenee of the third harmonie I < Pj > I from axial
eoordinates 0; l - eubie nonlinearity, 2 - square-Iaw nonlinearity, 3 - the sum.
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However, this difficulty can be bypassed if to act in the following way. We shall compare the
relation of amplitude of the third harmonie to the square of the second, then relation term in
't I ~ 2 disappears. Thus value of the parameter o is defined at known E from a expression

1< P3 >1
2

16 E 4(ka)4104 =

1< P2 >14
9

_ 4(ka)4 c: 411312 + 0211412 + 4(ka)2 c: 20 [ReCI} ) ReCI4) + ImCI}) ImCI 4 )]

- 1121
4

(9)

The multiplier 104 in the left part of the equation has appeared because the experimental
values I <P 3> I and I <P 2 > I are given as the relation of absolute values of pressure of the
appropriate harmonics to a peak pressure up on source, and are expressed in percentage.
Then evaluation the parameter CIA we shall use data, which are given below, for the values of
12, 13 and 14 calculated by us and the values of amplitudes of the second and the third
harmonics from [6, 7].

x ReI3 ImI4 Iml ,

0,4 1,03,10-3 5,10'10-2 3,10'10-2

1131 1141 11z1 I<~ >1 1< r, >1
3,36'10 -3 5,97'10-2 3,34'10-1 10 23

Last columns represent the experimental of the pressure of the third and the second
harmonics, accordingly. They are given, as it is told above, in percentage of peak pressure on
the source n.
Substituting the experimental data in (9), we obtain the quadratic equation for the parameter
o.

From the equation it is visible, that it has two roots - one ~ 107
, and another about 1. Above

given estimations specify the second root, as it is physically significant. lt is easy to find it, if
neglect by small composed the second order in the equation, then we'll obtainó / 10

2
"" 1,8 .

Whence for parameter o it is obtainó = 1,88 2 ;>.;; 23,1. Calculation of the nonlinear parameter

CIA using the known value of E with the help of the formula (8) gives us the value CIA""
36,1; which is in an agreement with the estimations of other authors. For example, the
evaluation of the CIA, carried out by Coppens and others [8] on a basis of thermodynamic
estimations give the value of 40,6. And also it is in a consent with results of estimations by
Filipczynski and Grabowska [9] C/A=42 .
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3. CONCLUSIONS AND DISCUSSION

Along Hadamard classification the problem of a medium parameter determination by a
series of experiments belongs to ill-posed ones. In a strict mathematical sense the solution of
such problem does not exist because the numbers of equations exceed the number of unknown
values. In fact if we use some algorithm for evaluation of the parameter, using few
experimental points, one arrives at overdetermined system even in the simplest algebraic case.
Moreover in some case the problem looks unstable hence yields one of Hadamard i11-posed-
problem conditions. In this case a small variation of the measurement results leads to a large
deviation in the result of the parameter evaluation, In the first case the method of squares
minimization is used [10]. In the second some regularization is necessary. In our case we
consider linear equations (9) in which the left-hand side is taken from measurements while the
coefficients in the right one are considered as exact, being calculated theoretica11y. It is the
linear system for the (k a) 2 E 28, 82 when (k a) 2 E 2 the coefficients are calculated
theoretica11y but the right-hand-side are results of measurements. The value of E is also
considered as given, to b defined from the second harmonics measurements. So, consider such
system for every set of I.h.s. values (more then two) as a source for the parameter
determination. Our problem has both reasons to be ill-posed. We would use the method of
regularization algorithm by Tikhonov [II]. Let us sketch the main features of the method
briefly.
Let us consider the system

Az=u, (10)

for the vector z, when A is the matrix with elements au' u is known vector. Let the r.h.s. of

(lO) is measured with the given error. Then instead of (l O) we de al with an other system
Az=u (11)

with the norms IIA- Ali :s;h and Ilu - uli :s;8 . As an approximate solution of (l l ) we sha11take

the vector z that minimize the functional

M" [z,u,A] = IIAz- ull2
+allzI1

2
, (12)

where the regularization parameter a is defined from the condition

(l3)

While the function <p (a ) = IIAz- ur increase and the \jf (a) = (hllz" II + 8 decrease. Therefore if

the parameters h and 8 are known, the a is determined uniquely. Here i1' = infllAz - uli.
He components of the vector za give solution of the linear algebraic system.

n

az~ + ~)kjZ; = «;
j=l

(l 4)

The notations are the following.
11

bkj = ~aikaij
i=l

11

d, = ~aikui'
i=l
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Starting from the seed value of the parameter of regularization a , we solve the system (14)
ad find z" .Having the vector z" we plug it into (13) and find a new value of a . Hereafter
we find the new value of z" and so on.
In our case choosing the set of experimental points [4] one arrives at an over determined
system. Using the method of minimaI squares yields its normaI form. Further by the
regularization we ob tai n an optimal value of the parameter.
Accuracy ofthe method, under discussion unfortunately, is not too high. It is because, at first,

not enough accuracy of experiments. So, mistakes in definition of vaIues of parameters of
nonlinearity are not consequence of the offered technique, and may be reduced by an increase
of accuracy of measurements.
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