PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of the analgesic properties of natural compounds of cannabinoid origin in Danio rerio model of nociception

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of Cannabis sativa in human history dates back thousands of years, with various historical and cultural applications. However, at the beginning of the 20th century, many countries enacted regulations to criminalize and restrict the use of cannabis, leading to a significant reduction in research on its medical applications. A novel approach to pain studies involves Danio rerio-based nociception models. These models use different methods to induce pain, with fish larvae often subjected to incubation in acetic acid solution, resulting in epidermal tissue damage. Nociceptive responses are then observed by tracking fish movement. Our research aimed to develop a simple and accessible Danio rerio (zebrafish) model of nociception to study the potential analgesic properties of CBD (cannabidiol) and CBG (cannabigerol) in comparison to the commonly known painkiller ibuprofen. This research seeks to contribute to our understanding of the potential therapeutic applications of cannabinoids in pain management.
Czasopismo
Rocznik
Strony
229--246
Opis fizyczny
Bibliogr. 28 poz., il. kolor., wykr.
Twórcy
  • Department of Medical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin
  • Department of Medical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin
  • Department of Medical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin
  • Department of Medical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin
  • Department of Medical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin
Bibliografia
  • [1] Modaresi, F.; Talachian, K.; The Characteristics of Clinical Trials on Cannabis and Cannabinoids: A Review of Trials for Therapeutic or Drug Development Purposes. Pharm Med. 2022, 36, 387-400. DOI: 10.1007/s40290-022-00447-7
  • [2] Aliferis, K.A.; Bernard-Perron D.; Cannabinomics: Application of Metabolomics in Cannabis (Cannabis sativa L.) Research and Development. Front Plant Sci. 2020, 11, 554. DOI: 10.3389/fpls.2020.00554
  • [3] Lal, S.; Shekher, A.; Puneet; Narula, A.S.; Abrahamse, H.; Gupta, S. C.; Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities. Pharmacol. Res. 2021, 163, 105302. DOI: 10.1016/j.phrs.2020.105302
  • [4] Breijyeh, Z.; Jubeh, B.; Bufo, S.A.; Karaman, R.; Scrano, L.; Cannabis: A Toxin-Producing Plant with Potential Therapeutic Uses. Toxins 2021, 13, 117. DOI: 10.3390/toxins13020117
  • [5] Malafoglia, V.; Bryant, B.; Raffaeli, W.; Giordano, A.; Bellipanni, G.; The zebrafish as a model for nociception studies. J. Cell. Physiol. 2013, 228, 10, 1956-1966. DOI: 10.1002/jcp.24379
  • [6] Barrot, M.; Tests and models of nociception and pain in rodents. Neuroscience 2012, 211, 39-50. DOI: 10.1016/j.neuroscience.2011.12.041
  • [7] Im, S.H.; Galko, M.J.; Pokes, sunburn, and hot sauce: Drosophila as an emerging model for the biology of nociception. Dev. Dyn. 2012, 241, 1, 16-26. DOI: 10.1002/dvdy.22737
  • [8] Ellis, L.D.; Berrue, F.; Morash, M.; Achenbach, J.C.; Hill, J.; McDougall, J.J.; Comparison of cannabinoids with known analgesics using a novel high throughput zebrafish larval model of nociception. Behav. Brain Res. 2018, 337, 151-159. DOI :10.1016/j.bbr.2017.09.028
  • [9] Sneddon, L.U.; Comparative Physiology of Nociception and Pain. Physiology 2018, 33, 63-73. DOI: 10.1152/physiol.00022.2017
  • [10] Colwill, R.M.; Creton, R.; Imaging escape and avoidance behavior in zebrafish larvae. Rev neurosci 2011, 22, 1, 63-73. DOI: 10.1515/rns.2011.008
  • [11] Lopez-Luna, J.; Al-Jubouri, Q.; Al-Nuaimy. W.; Sneddon, L.U.; Impact of stress, fear and anxiety on the nociceptive responses of larval zebrafish. PLoS One 2017, 12, 8. DOI: 10.1371/journal.pone.0181010
  • [12] Gao, Y.J.; Ji, R.R.; Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 2010, 126, 1, 56-68. DOI: 10.1016/j.pharmthera.2010.01.002
  • [13] Chahardehi A.M.; Arsad H.; Lim V.; Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants (Basel) 2020, 9, 10, 1345. DOI: 10.3390/plants9101345
  • [14] Rainsford, K.D.; Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology. 2009, 17, 6, 275-342. DOI: 10.1007/s10787-009-0016-x
  • [15] Thrikawala, S.; Niu, M.; Keller, N.P.; Rosowski, E.E.; Cyclooxygenase production of PGE2 promotes phagocyte control of A. fumigatus hyphal growth in larval zebrafish. PLOS Pathog. 2022, 18, 3, e1010040. DOI: 10.1371/journal.ppat.1010040
  • [16] Bailone, R.L.; Fukushima, H.C.S.; de Aguiar, L.K.; Borra, R.C.; The endocannabinoid system in zebrafish and its potential to study the effects of Cannabis in humans. Lab. Anim. Res. 2022, 38, 1, 5. DOI: 10.1186/s42826-022-00116-5
  • [17] van Niekerk, G.; Mabin, T.; Engelbrecht, A.-M.; Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective. Inflammopharmacology. 2019, 27, 1, 39-46. DOI: 10.1007/s10787-018-00560-7
  • [18] Theken, K.N.; et al.; Variability in the Analgesic Response to Ibuprofen Is Associated With Cyclooxygenase Activation in Inflammatory Pain. Clin. Pharmacol. Ther. 2019, 106, 3, 632-641. DOI: 10.1002/cpt.1446
  • [19] Elikkottil J.; Gupta P.; Gupta K.; The analgesic potential of cannabinoids. J Opioid Manag. 2009, 5, 6, 341-57. Erratum in: J Opioid Manag. 2010, 6, 1, 14. Elikottil, Jaseena [corrected to Elikkottil, Jaseena]
  • [20] Urits, I.; et al.; Use of cannabidiol (CBD) for the treatment of chronic pain. Best Pract. Res. Clin. Anaesthesiol. 2020, 34, 3, 463-477. DOI: 10.1016/j.bpa.2020.06.004
  • [21] Legare, C.A.; Raup-Konsavage, W.M.; Vrana, K.E.; Therapeutic Potential of Cannabis, Cannabidiol, and Cannabinoid-Based Pharmaceuticals. Pharmacology 2022, 107, 3-4, 131-149. DOI: 10.1159/000521683
  • [22] Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E.; The Origin and Biomedical Relevance of Cannabigerol. Int. J. Mol. Sci. 2022, 23, 14, 7929. DOI: 10.3390/ijms23147929
  • [23] Morales, P.; Hurst, D.P.; Reggio, P.H.; Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog. Chem. Org. Nat. Prod. 2017, 103, 103-131. DOI: 10.1007/978-3-319-45541-9_4
  • [24] Busquets-Garcia, A.; Bains, J.; Marsicano, G.; CB1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology. 2018, 43, 1, 4-20. DOI: 10.1038/npp.2017.206
  • [25] Ye, M.; Monroe, S.K.; Gay, S.M.; Armstrong, M.L.; Youngstrom, D.E.; Urbina, F.L.; Gupton, S.L.; Reisdorph, N.; Diering, G.H.; Coordinated Regulation of CB1 Cannabinoid Receptors and Anandamide Metabolism Stabilizes Network Activity during Homeostatic Downscaling. eNeuro. 2022, 9, 6. DOI: 10.1523/ENEURO.0276-22.2022
  • [26] Tuz-Sasik, M.U.; Boije, H.; Manuel, R.; Characterization of locomotor phenotypes in zebrafish larvae requires testing under both light and dark conditions. PLoS One. 2022, 17, 4. DOI: 10.1371/journal.pone.0266491
  • [27] Fernandes, A.M.; Fero, K.; Arrenberg, A.B.; Bergeron, S.A.; Driever, W.; Burgess, H.A.; Deep Brain Photoreceptors Control Light-Seeking Behavior in Zebrafish Larvae. Curr. Biol. 2012, 22, 21, 2042-2047. DOI: 10.1016/j.cub.2012.08.016
  • [28] Matos-Cruz, V.; Blasic, J.; Nickle, B.; Robinson, P.R.; Hattar, S.; Halpern, M.E.; Unexpected Diversity and Photoperiod Dependence of the Zebrafish Melanopsin System. PLoS 2011, 6, 9, e25111. DOI: 10.1371/journal.pone.0025111
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15c7b7b4-64cd-474a-af23-4b69cc288c76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.