Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study looks at how well boron carbide (B4C), known for its outstanding hardness and heat resistance, works as an abrasive in the magnetic abrasive finishing (MAF) process to remove cracked layers from metal surfaces. The study focused on the surface integrity and rehabilitation of the compressor blade of a GE gas turbine that includes surface roughness, surface topology (microcracks), and the material removal rate after a period of service. Experimental work employed the Taguchi design with L9 trials in Minitab 17, involving three variables. The compressor blade is composed of AISI 403 stainless steel, and the MAF coil features 5200 turns of pure copper wire with a diameter of 0.6 mm and a cylindrical end pole. The results showed a significant improvement in surface topology, as analyzed by microscopic images taken before and after the Magnetic Abrasive Finishing (MAF) process. The best surface roughness improvement achieved was 38.99% when rotation speed was 800 r.p.m., gap distance was 1.8, and mixing ratio was 50%. The rate of microcrack removal was significantly improved, contributing to a more polished surface appearance. However, the process had a limited effect on larger cracks. According to Taguchi analysis, the abrasive mixing ratio parameter has the main or maximum effect on surface roughness, followed by rotation speed and the last gap distance. These results reflect the process's efficiency in removing microcracks, underscoring the importance of continuous surface evaluation to ensure early treatment before cracks expand and cause part failure.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
65--79
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
autor
- University of Technology, Al-Sina’a St., P.O. Box: 18310 Baghdad, Iraq
autor
- University of Technology, Al-Sina’a St., P.O. Box: 18310 Baghdad, Iraq
autor
- University of Technology, Al-Sina’a St., P.O. Box: 18310 Baghdad, Iraq
Bibliografia
- 1. Choopani Y., Razfar M. R., Saraeian P., and Farahnaki¬an M., Experimental investigation of external surface finishing of AISI 440C stainless steel cylinders using the magnetic abrasive finishing process, International Journal of Advanced Manufacturing Technology, 2016, 83(9–12), 1811–1821, doi: 10.1007/s00170-015-7700-3.
- 2. Ahmed A., S. S.-E. R. Express, and undefined 2024, Optimizing the five magnetic abrasive finishing factors on surface quality using Taguchi-based grey relational analysis, iopscience.iop.org, Accessed: Jan. 25, 2025. [Online]. Available: https://iopscience.iop.org/article/10.1088/2631-8695/ad2d99/meta.
- 3. Rémy L., Geuffrard M., Alam A., Köster A., and Fleury E. Effects of microstructure in high temperature fatigue: Lifetime to crack initiation of a single crystal superalloy in high temperature low cycle fatigue, Int J Fatigue, 2013, 57, 37–49, doi: 10.1016/j.ijfatigue.2012.10.013.
- 4. Singh A. et al. Comparative assessment of abrasives in magnetic abrasive finishing: An experimental performance evaluation, J Magn Magn Mater, Aug. 2024, 604, 172312, doi: 10.1016/J.JMMM.2024.172312.
- 5. Jiang C. P., Masrurotin W., Wibisono A. T. et al. Enhancing internal cooling channel design in Inconel 718 turbine blades via laser powder bed fusion: A comprehensive review of surface topography enhancements, Int. J. Precis. Eng. Manuf., 2025, 26, 487–511, doi: 10.1007/s12541-024-01177-3.
- 6. Zhou K., Chen Y., Du Z. W., and Niu F. L. Surface integrity of titanium part by ultrasonic magnetic abrasive finishing, International Journal of Advanced Manufacturing Technology, 2015, 80(5–8), 997–1005, doi: 10.1007/s00170-015-7028-z.
- 7. Khangura S. S., Sran L. S., Srivastava A. K., and Singh H. Investigations into the removal of EDM recast layer with magnetic abrasive machining, ASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015, 2015, 1, 1–6.
- 8. Guo J., Tan Z. E., Au K. H., and Liu K. Experimental investigation into the effect of abrasive and force conditions in magnetic field-assisted finishing, International Journal of Advanced Manufacturing Technology, 2017, 90(5–8), 1881–1888, doi: 10.1007/s00170-016-9491-6.
- 9. Zhang J., Chaudhari A., and Wang H. Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel, J Manuf Process, February 2019, 45, 710–719, doi: 10.1016/j.jmapro.2019.07.044.
- 10. Wu P. Y., Hirtler M., Bambach M., and Yamaguchi H. Effects of build- and scan-directions on magnetic field-assisted finishing of 316L stainless steel disks produced with selective laser melting, CIRP J Manuf Sci Technol, 2020, 31(2019), 583–594, doi: 10.1016/j.cirpj.2020.08.010.
- 11. Zhang Z. et al. Fatigue life enhancement in alpha/beta Ti–6Al–4V after shot peening: An EBSD and TEM crystallographic orientation mapping study of surface layer, Materialia (Oxf), 2020, 12, 100813, doi: 10.1016/j.mtla.2020.100813.
- 12. Takesue S., Kikuchi S., Akebono H., Morita T., and Komotori J. Characterization of surface layer formed by gas blow induction heating nitriding at different temperatures and its effect on the fatigue properties of titanium alloy, Results in Materials, 2020, 5, 100071, doi: 10.1016/j.rinma.2020.100071.
- 13. Schneller W. et al. Fatigue strength assessment of additively manufactured metallic structures considering bulk and surface layer characteristics, Addit Manuf, 2021, 40, 101930, doi: 10.1016/j.addma.2021.101930.
- 14. Arora K. and Singh A. K. Theoretical and experimental investigation on surface roughness of straight bevel gears using a novel magnetorheological finishing process, Wear, 2021, 476, no. December 2020, doi: 10.1016/j.wear.2021.203693.
- 15. Ahmad S., Singari R. M., and Mishra R. S. Development of Al2O3-SiO2-based magnetic abrasive by sintering method and its performance on Ti-6Al-4V during magnetic abrasive finishing, Transactions of the Institute of Metal Finishing, 2021, 99(2), 94–101, doi: 10.1080/00202967.2021.1865644.
- 16. Wang Y., Tang C. C., Chai H. Y., Chen Y. Z., Jin R. Q., and Xiong W. Study on removal of recast layer of NiTi shape memory alloy machined with magnetic field-assisted WEDM-ECM complex process, International Journal of Advanced Manufacturing Technology, 2023, 129(9–10), 4335–4354, doi: 10.1007/s00170-023-12588-3.
- 17. Li Z., Jia J., Wang Y., Lv M., and Yang S. Experimental study on polishing of fluid magnetic abrasives for the wire electrical discharge grinding surface of micro-shafts, International Journal of Advanced Manufacturing Technology, 2023, 129(5–6), 2067–2085, doi: 10.1007/s00170-023-12425-7.
- 18. Gottwalt-Baruth A., Kubaschinski P., Waltz M., and Tetzlaff U. Influence of the cutting method on the fatigue life and crack initiation of non-oriented electrical steel sheets, Int J Fatigue, 2024, 180, September 2023, 108073, doi: 10.1016/j.ijfatigue.2023.108073.
- 19. Rasouli S. A. and Nori D. Investigation of Mass Magnetic Abrasive Finishing Process on Compressor Blades, 2024, 12(4), 5–26.
- 20. Gao Y., Zhao Y., Zhang G., Yin F., Zhao G., and Guo H. Characteristics of a novel atomized spherical magnetic abrasive powder, International Journal of Advanced Manufacturing Technology, 2020, 110(1–2), 283–290, doi: 10.1007/s00170-020-05810-z.
- 21. Zou Y., Xie H., and Zhang Y. Study on surface quality improvement of the plane magnetic abrasive finishing process, International Journal of Advanced Manufacturing Technology, 2020, 109(7–8), 1825–1839, doi: 10.1007/s00170-020-05759-z.
- 22. Du Z. W., Chen Y., Zhou K., and Li C. Research on the electrolytic-magnetic abrasive finishing of nickel-based superalloy GH4169, International Journal of Advanced Manufacturing Technology, 2015, 81(5–8), 897–903, doi: 10.1007/s00170-015-7270-4.
- 23. Zou Y., Satou R., Yamazaki O., and Xie H. Development of a new finishing process combining a fixed abrasive polishing with magnetic abrasive finishing process, Machines, 2021, 9(4), 1–14, doi: 10.3390/machines9040081.
- 24. Zou Y., Xing B., and Sun X. Study on the magnetic abrasive finishing combined with electrolytic process—investigation of machining mechanism, International Journal of Advanced Manufacturing Technology, May 2020, 108(5–6), 1675–1689, doi: 10.1007/S00170-020-05442-3.
- 25. Ahmed, A. S. S.-E. R. Express, and undefined 2024, Optimizing the five magnetic abrasive finishing factors on surface quality using Taguchi-based grey relational analysis, iopscience.iop.org, Accessed: Jan. 25, 2025. [Online]. Available: https://iopscience.iop.org/article/10.1088/2631-8695/ad2d99/meta.
- 26. Guo J. et al. Novel rotating-vibrating magnetic abrasive polishing method for double-layered internal surface finishing, Journal of Materials Processing Technology, 2019, Accessed: Jan. 25, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924013618304217.
- 27. Jain V. K. Abrasive-based nano-finishing techniques: An overview, Machining Science and Technology, 2008, 12(3), 257–294, doi: 10.1080/10910340802278133.
- 28. Babu M. K. and Chetty O. V. K. A study on recycling of abrasives in abrasive water jet machining, Wear, 2003, 254, October 2002, 763–773, doi: 10.1016/S0043-1648(03)00256.
- 29. Hashimoto F., Yamaguchi H., Krajnik P., Wegener K., Chaudhari R., Hoffmeister H. W. Abrasive fine-finishing technology. CIRP Annals, 2016, 65(2), 597–620.
- 30. Jain V. K. et al. Advanced magnetic abrasive finishing for nanoscale surface integrity. Journal of Manufacturing Processes, 2018, 35, 685–699.
- 31. Singh D. K. and Shan H. S. Development of magneto-abrasive finishing process. International Journal of Machine Tools and Manufacture, 2002, 42(8), 953–959.
- 32. Yamaguchi H., Shinmura T., and Ikeda R. Study of internal finishing of austenitic stainless steel capillary tubes by magnetic abrasive finishing. Journal of Manufacturing Science and Engineering, 2017, 139(3), 031018.
- 33. Kremen G. Z., Elsayed E. A., and Rafalovich V. Mechanism of material removal in magnetic abrasive finishing. Wear, 2014, 317(1–2), 153–161.
- 34. Kala P. and Pandey P. M. Comparison of finishing characteristics of two paramagnetic materials using MAF. International Journal of Advanced Manufacturing Technology, 2015, 77(5–8), 997–1010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15c1854d-53e0-46bb-8ed8-f08ef9c76157
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.