PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational Fluid Dynamics calculation of a planar solid oxide fuel cell design running on syngas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study deals with modelling and validation of a planar Solid Oxide Fuel Cell (SOFC) design fuelled by gas mixture of partially pre-reformed methane. A 3D model was developed using the ANSYS Fluent Computational Fluid Dynamics (CFD) tool that was supported by an additional Fuel Cell Tools module. The governing equations for momentum, heat, gas species, ion and electron transport were implemented and coupled to kinetics describing the electrochemical and reforming reactions. In the model, the Water Gas Shift reaction in a porous anode layer was included. Electrochemical oxidation of hydrogen and carbon monoxide fuels were both considered. The developed model enabled to predict the distributions of temperature, current density and gas flow in the fuel cell.
Rocznik
Strony
513--521
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Andersson M., Yuan J., Sunden B., 2013, SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. J. Power Sources, 232, 42-54. DOI: 10.1016/j.jpowsour.2012.12.122.
  • 2. Barelli L., Bidini G., Cinti G., GAllorini F., Poniz M., 2017, SOFC stack coupled with dry reforming. Appl. Energy, 192, 498-507. DOI: 10.1016/j.apenergy.2016.08.167.
  • 3. Bossel U., 2015, Small scale power generation for road trucks with planar SOFC system. ECS Trans., 68, 1, 193 -199. DOI: 10.1149/06801.0193ecst.
  • 4. D’Andrea G., Gandiglio M., Lanzini A., Santarelli M., 2017, Dynamic model with experimental validation of a biogas-fed SOFC plant. Energy Conversion and Management, 135, 21-34. DOI: 10.1016/j.enconman.2016.12.063.
  • 5. Gholaminezhad I., Paydar M. H., Jafarpur K., Paydar S., 2017, Multiscale mathematical modeling of methane-fueled SOFCs: predicting limiting current density using a modified Fick’s model. Energy Convers. Manage., 148, 222-237. DOI: 10.1016/j.enconman.2017.05.071.
  • 6. Ho T. X., Kosinski P., Hoffman A. C., Vik A., 2009, Numerical analysis of a planar anode-supported SOFC with composite electrodes. Int. J. Hydrogen Energy, 34, 3488-3499. DOI: 10.1016/j.ijhydene.2009.02.016.
  • 7. Iwai H., Yamamoto Y., Saito M., Yoshida H., 2011, Numerical simulation of intermediate temperature direct internal reforming planar solid oxide fuel cell. Energy, 36, 2225-2234. DOI: 10.1016/j.energy.2010.03.058.
  • 8. Kang I., Kang Y., Yoon S., Bae G., Bae J., 2008, The operating characteristics of solid oxide fuel cells driven by diesel authothermal reformate. Int. J. Hydrogen Energy, 33, 21, 6298-6307. DOI: 10.1016/j.ijhydene.2008.07.123.
  • 9. Papurello D., Iafrate Ch., Lanzini A. Santarelli M., 2017, Trace compounds impact on SOFC performance: experimental and modelling approach. Appl. Energy, 208, 637-654. DOI: 10.1016/j.apenergy.2017.09.090.
  • 10. Park J., Li P, Bae J., 2012, Analysis of chemical, electrochemical reactions and thermo-fluid flow in methane feed internal reforming SOFCs: Part I – modeling and effect of gas concentrations. Int. J. Hydrogen Energy, 37, 10, 8512-8531. DOI: 10.1016/j.ijhydene.2012.02.110.
  • 11. Pianko-Oprych P., Kasilova E., Jaworski Z., 2014, Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling. Polish J. Chem. Technol., 16, 2, 51-55. DOI: 10.2478/pjct-2014-0029.
  • 12. Pianko-Oprych P. Zinko T., Jaworski Z., 2016, Simulation of the steady-state behaviour of a new design of a single planar Solid Oxide Fuel Cell. Polish J. Chem. Technol., 18, 1, 64-71. DOI: 10.1515/pjct-2016-0011.
  • 13. Razbani O., Assadi M., Andersson M., 2013, Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane free biogas. Int. J. Hydrogen Energy, 38, 10068-10080. DOI: 10.1016/j.ijhydene.2013.05.153.
  • 14. Stoeckl B., Subotic V., Reichholf D., Schroettner H., Hochenauer Ch., 2017, Extensive analysis of large planar SOFC: operation with humidified methane and carbon monoxide to examine carbon deposition based degradation. Electrochim. Acta. DOI: 10.1016/j.electacta.2017.09.026.
  • 15. Tweedie M., Lemcoff N., 2014, CFD modeling and analysis of a planar anode supported intermediate temperature Solid Oxide Fuel Cell, COMSOL conference, Boston, USA, May 2014.
Uwagi
PL
Computational Fluid Dynamics calculation of a planar solid oxide fuel cell design running on syngas
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15c167cd-6dd5-4c4c-8057-3b115b7f6d22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.