Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In response to the growing demand for eco-friendly materials and low-impact technologies, a study was conducted on the ultra-fine grinding of basalt in vibratory mills, with the basalt used for the experiments originating from the Targowica basalt quarry. Two types of basalt were used in the study: fine basalt consisting of particles with a size below 200 µm, agglomerated into lumps smaller than 100 mm, and aggregate with a particle size below 5 mm. The objective was to obtain a high proportion of the 0-10 µm particle size fraction, applicable in agriculture, construction, and environmental protection. Grinding tests were carried out for two types of feed material and different sets of grinding media. The best results were obtained using a mixture of steel grinding balls (Ø12 and 17.5 mm) with the addition of 0.4% polypropylene glycol, aimed at reducing agglomeration and improving grinding efficiency. In batch-mode operation, up to 70.5% of the 0-10 µm fraction was achieved. Although continuous grinding produced lower results (up to 44% of the 0-10 µm fraction), it demonstrated industrial implementation potential, especially after introducing chamber aeration and a modified material discharge method. The research confirmed the high industrial potential and effectiveness of vibratory grinding of basalt powder and indicated directions for further studies.
Wydawca
Czasopismo
Rocznik
Tom
Strony
531--538
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- AGH University of Krakow Faculty of Mechanical Engineering and Robotics Department of Machinery Engineering and Transport Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- 1. J.B. Richardson, ‘Basalt Rock Dust Amendment on Soil Health Properties and Inorganic Nutrients – Laboratory and Field Study at Two Organic Farm Soils in New England, USA’, Agriculture, vol. 15, no. 1, p. 52, Dec. 2024, doi: 10.3390/agriculture15010052.
- 2. L.T. Conceição et al., ‘Potential of basalt dust to improve soil fertility and crop nutrition’, Journal of Agriculture and Food Research, vol. 10, p. 100443, Dec. 2022, doi: 10.1016/j.jafr.2022.100443.
- 3. D.J. Beerling et al., ‘Farming with crops and rocks to address global climate, food and soil security’, Nature Plants, vol. 4, no. 3, pp. 138-147, Feb. 2018, doi: 10.1038/s41477-018-0108-y.
- 4. A.C. Dalmora et al., ‘Nanoparticulate mineral matter from basalt dust wastes’, Chemosphere, vol. 144, pp. 2013-2017, Feb. 2016, doi: 10.1016/j.chemo-sphere.2015.10.047.
- 5. ‘4 ways to make the cement industry more sustainable’, World Economic Forum. Accessed: Aug. 29, 2025. [Online]. Available: https://www.weforum.org/stories/2024/09/cement-production-sustainable-concrete-co2-emissions/
- 6. Z. Liu, K. Takasu, H. Koyamada, and H. Suyama, ‘A study on engineering properties and environmental impact of sustainable concrete with fly ash or GGBS’, Construction and Building Materials, vol. 316, p. 125776, Jan. 2022, doi: 10.1016/j.conbuildmat.2021.125776.
- 7. A. Gholampour and T. Ozbakkaloglu, ‘Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag’, Journal of Cleaner Production, vol. 162, pp. 1407-1417, Sep. 2017, doi: 10.1016/j.jclepro.2017.06.087.
- 8. P. Chindaprasirt, C. Jaturapitakkul, and T. Sinsiri, ‘Effect of fly ash fineness on compressive strength and pore size of blended cement paste’, Cement and Concrete Composites, vol. 27, no. 4, pp. 425-428, Apr. 2005, doi: 10.1016/j.cemconcomp.2004.07.003.
- 9. Y. Hefni, Y.A.E. Zaher, and M.A. Wahab, ‘Influence of activation of fly ash on the mechanical properties of concrete’, Construction and Building Materials, vol. 172, pp. 728-734, May 2018, doi: 10.1016/j.conbuildmat.2018.04.021.
- 10. Y. Dhandapani, M. Santhanam, G. Kaladharan, and S. Ramanathan, ‘Towards ternary binders involving limestone additions – A review’, Cement and Concrete Research, vol. 143, p. 106396, May 2021, doi: 10.1016/j.cemconres.2021.106396.
- 11. G.L. Golewski, ‘Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions’, Energies, vol. 14, no. 15, p. 4558, Jul. 2021, doi: 10.3390/en14154558.
- 12. S. Unčík and V. Kmecová, ‘The Effect of Basalt Powder on the Properties of Cement Composites’, Procedia Engineering, vol. 65, pp. 51-56, 2013, doi: 10.1016/j.proeng.2013.09.010.
- 13. G.G.D. Ponzi et al., ‘Basalt powder as a supplementary cementitious material in cement paste for CCS wells: chemical and mechanical resistance of cement formulations for CO2 geological storage sites’, International Journal of Greenhouse Gas Control, vol. 109, p. 103337, Jul. 2021, doi: 10.1016/j.ijggc.2021.103337.
- 14. M. Dobiszewska, W. Pichór, and P. Szołdra, ‘Effect of basalt powder addition on properties of mortar’, MATEC Web Conf., vol. 262, p. 06002, 2019, doi: 10.1051/matecconf/201926206002.
- 15. M.S. Moawad, S. Younis, and A.E.-R. Ragab, ‘Assessment of the optimal level of basalt pozzolana blended cement replacement against concrete performance’, J. Eng. Appl. Sci., vol. 68, no. 1, p. 42, Dec. 2021, doi: 10.1186/s44147-021-00046-4.
- 16. P. Hobson and S.N. Bikes, ‘Australian researchers turn morning coffee waste into greener concrete’, Reuters, May 22, 2024. Accessed: May 06, 2025. [Online]. Available: https://www.reuters.com/business/environment/australian-researchers-turn-morning-coffee-waste-into-greener-concrete-2024-05-22/
- 17. E.S. Bakhoum and Y.M. Mater, ‘Decision Analysis for the Influence of Incorporating Waste Materials on Green Concrete Properties’, Int J Concr Struct Mater, vol. 16, no. 1, p. 63, Dec. 2022, doi: 10.1186/s40069-022-00553-5.
- 18. F.J. O’Flaherty, F.J. Khalaf, and V. Starinieri, ‘Influence of additives on strength enhancement and greenhouse gas emissions of pre-cast lime-based construction products’, Low-carbon Mater. Green Constr., vol. 1, no. 1, p. 26, Oct. 2023, doi: 10.1007/s44242-023-00026-2.
- 19. R. Huang, L. Xu, Z. Xu, Q. Zhang, and J. Wang, ‘A Review on Concrete Superplasticizers and Their Potential Applications for Enhancing the Performance of Thermally Activated Recycled Cement’, Materials, vol. 17, no. 17, Art. no. 17, Jan. 2024, doi: 10.3390/ma17174170.
- 20. K. Witecki, A. Jakubcewicz, I. Kruszwicka.: Sustainable development, i.e. environmental, technological and economic aspects in mineral engineering. Min. Mach. 2024, vol. 42 issue 3, pp. 183-192. DOI: https://doi.org/10.32056/KOMAG2024.3.2
- 21. A. Stempkowska, T. Gawenda, A. Chajec, and Ł. Sadowski, ‘Effect of Granite Powder Grain Size and Grinding Time of the Properties of Cementitious Composites’, Materials, vol. 15, no. 24, Art. no. 24, Jan. 2022, doi: 10.3390/ma15248837.
- 22. O. Labahn, Cement engineers’ handbook, 4th English ed. Wiesbaden: Bauverlag, 1983.
- 23. S. Morrell, ‘The Prediction of Power Draw in Wet Tumbling Mills’, 1993. doi: 10.13140/RG.2.1.3189.2248.
- 24. J. Sidor, D. Foszcz, P. Tomach, and D. Krawczykowski, ‘Młyny wysokoenergetyczne do mielenia rud i surowców mineralnych’, Cuprum: czasopismo naukowo-techniczne górnictwa rud, vol. nr 2, 2015, Accessed: Apr. 13, 2025. [Online]. Available: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-a0b9a183-9218-447c-883d-3937cfa63c76.
- 25. J. Sidor and P. Tomach, ‘Możliwość intensyfikacji procesu wytwarzania nanoproszku grafitu w młynie wibracyjnym’, Materiały Ceramiczne = Ceramic Materials, vol. 68, no. 4, pp. 335–339, 2016.
- 26. J. Sidor and P. Tomach, ‘The development of vibratory tube mills’, Maszyny Górnicze, vol. R. 28, no. 1, 2010.
- 27. K.R. Rajaonarivony, C. Mayer-Laigle, B. Piriou, and X. Rouau, ‘Comparative comminution efficiencies of rotary, stirred and vibrating ball-mills for the production of ultrafine biomass powders’, Energy, vol. 227, p. 120508, Jul. 2021, doi: 10.1016/j.energy.2021.120508.
- 28. F. Shi, R. Morrison, A. Cervellin, F. Burns, and F. Musa, ‘Comparison of energy efficiency between ball mills and stirred mills in coarse grinding’, Minerals Engineering, vol. 22, no. 7, pp. 673-680, Jun. 2009, doi: 10.1016/j.mineng.2008.12.002.
- 29. P. Tomach, ‘The Influence of the Grinding Media Diameter on Grinding Efficiency in a Vibratory Ball Mill’, Materials, vol. 17, no. 12, p. 2924, Jun. 2024, doi: 10.3390/ma17122924.
- 30. J. Sidor, Badania, modele i metody projektowania młynów wibracyjnych – Basic research, models and engineering design of vibratory mills. in Rozprawy Monografie. Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15bc09bb-f09f-4a10-ada2-c0b88a04c401
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.