PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Norm estimates for functions of non-selfadjoint operators nonregular on the convex hull of the spectrum

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a bounded linear operator A in a Hilbert space with a Hilbert-Schmidt Hermitian component (A−A*)/2i. A sharp norm estimate is established for functions of A nonregular on the convex hull of the spectrum. The logarithm, fractional powers and meromorphic functions of operators are examples of such functions. Our results are based on the existence of a sequence An(n = 1, 2,...) of finite dimensional operators strongly converging to A, whose spectra belongs to the spectrum of A. Besides, it is shown that the resolvents and holomorphic functions of An strongly converge to the resolvent and corresponding function of A.
Wydawca
Rocznik
Strony
267--277
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653, Beer-Sheva 84105, Israel
Bibliografia
  • [1] Gel’fand I. M., Shilov G. E., Some questions of theory of dierential equations, Nauka, Moscow, 1958 (in Russian)
  • [2] Gil’ M. I., Estimates for norm of matrix-valued functions, Linear Multilinear Algebra, 1993, 35, 65-73
  • [3] Gil’ M. I., Operator functions and localization of spectra, Lecture Notes in Math., 1830, Springer-Verlag, Berlin, 2003
  • [4] Gil’ M. I., Estimates for functions of finite and infinite matrices. Perturbations of matrix functions, Int. J. Math. Game Theory Algebra, 2013, 21(4/5), 328-392
  • [5] Gil’ M. I., Estimates for entries of matrix valued functions of infinite matrices, Math. Phys. Anal. Geom., 2008, 11(2), 175-186
  • [6] Boyadzhiev K. N., Logarithms and imaginary powers of operators on Hilbert spaces, Collect. Math., 1994, 45, 287-300
  • [7] Chiumiento E., On normal operator logarithms, Linear Algebra Appl., 2013, 439, 455-462
  • [8] Conway J. B., Morrel B. B., Roots and logarithms of bounded operators on Hilbert space, J. Funct. Anal., 1987, 70(1), 171-193
  • [9] Haase M., Spectral properties of operator logarithms, Math. Z., 2003, 245, 761-779
  • [10] Okazawa N., Logarithms and imaginary powers of closed linear operators, Int. Eqs. Oper. Theor., 2000, 38, 458-500
  • [11] Schmoeger C., On logarithms of linear operators on Hilbert spaces, Demonstr. Math., 2002, 35(2), 375-384
  • [12] Gil’ M. I., Matrix functions nonregular on the convex hull of the spectrum, Linear Multilinear Algebra, 2012, 60(4), 465-473
  • [13] Gohberg I. C., Goldberg S., Kaashoek M. A., Classes of linear operators, 2, Birkhäuser Verlag, Basel, 1993
  • [14] Brodskii M. S., Triangular and Jordan representations of linear operators, Transl. Math. Mongr., 32, Amer. Math. Soc., Providence, R. I., 1971
  • [15] Gohberg I. C., Krein M. G., Theory and applications of Volterra operators in a Hilbert space, Trans. Mathem. Monographs, 24, Amer. Math. Soc., R. I, 1970
  • [16] Radjavi H., Rosenthal P., Invariant subspaces, Springer-Verlag, Berlin, 1973
  • [17] Gil’ M. I., Bounds for determinants of linear operators and their applications, CRC Press, Taylor & Francis Group, London, 2017
  • [18] Brodskii V. M., Gohberg I. C., Krein M. G., General theorems on triangular representations of linear operators and multiplicative representations of their characteristic functions, Funct. Anal. Appl., 1969, 3(4), 255-276
  • [19] Brodskii M. S., Triangular representation of some operators with completely continuous imaginary parts, Dokl. Akad. Nauk SSSR, 1960, 133, 1271-1274 (in Russian). English translation: Soviet Math. Dokl., 1960, 1, 952-955
  • [20] Gohberg I. C., Krein M. G., Introduction to the theory of linear nonselfadjoint operators, Trans. Mathem. Monographs, 18, Amer. Math. Soc., R. I., 1969
  • [21] Kato T., Perturbation theory for linear operators, Springer-Verlag, Berlin 1980
  • [22] Bhatia R., Rosenthal P., How and why to solve the matrix equation AX−XB=Y, Bull. London Math. Soc., 1997, 29, 1-21
  • [23] Gil’ M. I., Resolvents of operators on tensor products of Euclidean spaces, Linear Multilinear Algebra, 2015, 64(4), 699-716
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15b985ab-9626-41e1-829a-8dd29a271b08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.