PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rock failure analysis based on a coupled elastoplastic-logarithmic damage model

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model pękania skał oparty na sprzężonym elastoplastyczno-logarytmicznym modelu uszkodzeń
Języki publikacji
EN
Abstrakty
EN
The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.
PL
Zachowanie materiału skalnego otaczającego wyrobiska podziemne w odpowiedzi na wysokie stany lokalnych naprężeń działających in situ jest zazwyczaj nieodwracalne i nieliniowe. Reakcje nieodwracalne spowodowane są w głównej mierze przez płynięcie plastyczne i procesy uszkodzeń. Płynięcie plastyczne uwarunkowane jest przez występowanie lokalnych naprężeń ścinających powodujące obsunięcia skał. W trakcie tego procesu ilość wiązań netto pozostaje praktycznie niezmieniona. Całościowy efekt płynięcia plastycznego w skali makroskopowej polega na tym, że właściwości elastyczne (np. sztywność) stają się niewrażliwe na działanie nieodwracalnych procesów tego rodzaju. Podstawową przyczyną reakcji nieodwracalnych reakcji w materiałach quasi-kruchych, do których należą skały, jest powstawanie uszkodzeń wewnątrz materiału. W skali mikroskopowej, proces uszkodzenia rozpoczyna się od zainicjowania i stopniowej propagacji mikro-pęknięć. Gdy długość mikro- pęknięć osiągnie wartość graniczną, zaczynają one łączyć się ze sobą w rezultacie powodując powstanie lokalnych mezo-pęknięć. W ujęciu makroskopowym i fenomenologicznym, następstwami procesu uszkodzenia jest obniżenie sztywności, powstawanie dylatacji szczelin oraz miękniecie materiału. W pary wykorzystano sprzężony model elastoplastyczno- logarytmiczny do symulacji nieodwracalnych odkształceń i utraty sztywności materiału skalnego pod wpływem naprężeń. W modelu tym ewolucje uszkodzeń i opis płynięcia plastycznego sformułowano w oparciu o reguły nieodwracalnych przemian termodynamicznych. Aby uwzględnić utratę sztywności oraz miękniecie materiału w obszarach gdzie występowały największe naprężenia wykorzystano zmienną logarytmiczną opisującą uszkodzenie. Odkształcenia plastyczne zamodelowano z wykorzystaniem modelu plastycznego opartego na warunku plastyczności Drukera-Pragera. Zaproponowano także algorytm do obliczania kolejnych kroków procedury numerycznej, oparty na zaproponowanym modelu plastycznym oraz konstytutywnym modelu uszkodzeń. Opracowany model pracuje w środowisku VC++. Został on następnie wykorzystany jako osobny, nowy model konstytutywny zapisany w kodzie DEM (UDEC). W części końcowej przeprowadzono symulację zachowania wapienia oolitowego w oparciu o zaproponowany model. Nieodwracalne odkształcenia, utrata sztywności zostały odtworzone w postaci wyników procedury numerycznej. Ponadto, przeprowadzono symulacje zachowania skał w zależności od działającego na nie ciśnienia w oparciu o obserwacje eksperymentalne.
Rocznik
Strony
753--774
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
  • Amirkabir University of Technology, Department of Mining and Metallurgical Engineering, Tehran, Iran
  • Amirkabir University of Technology, Department of Mining and Metallurgical Engineering, Tehran, Iran
autor
  • Amirkabir University of Technology, Department of Mining and Metallurgical Engineering, Tehran, Iran
Bibliografia
  • [1] Addessi D., Marfia S., Sacco., E. 2002. A Plastic Nonlocal Damage Model. Computer Methods in Applied Mechanics and Engineering 191 (13-14), 1291-1310.
  • [2] Bazant Z.P., Kim S.S., 1979. Plastic-Fracturing Theory for Concrete. ASCE Journal of Engineering Mechanics 105 (3), 407-421.
  • [3] Brady B.H.G., Brown E.T., 2005. Rock Mechanics for underground mining. Springer Science.
  • [4] Carol I., Rizzi E., Willam K., 2001. On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage. International Journal of Solids and Structures 38: 491-518.
  • [5] Chiarellia A.S., Shao J.F., Hoteit N., 2003. Modeling of elastoplastic damage behavior of a claystone. International Journal of Plasticity 19, 23-45.
  • [6] Conil N., Djeran-Maigre I., Cabrillac R., Su K., 2004. Thermodynamics modelling of plasticity and damage of argillite. C. R. Mecaniqu 332; 841-848.
  • [7] Dragon A., Morz Z., 1979. A Continuum Theory for Plastic-Brittle Behavior of Rock and Concrete. International Journal of Engineering Scienc 17 (2), 121-137.
  • [8] Hansen E., Willam K., Carol I., 2001. A Two-Surface Anisotropic Damage/Plasticity Model for Plain Concrete, in Fracture Mechanics of Concrete Materials, de Borst, R. (Ed.), A.A. Balkema, Rotterdam, 549-556.
  • [9] Jefferson A.D., 2003. Craft - A Plastic-Damage-Contact Model for Concrete. I. Model Theory and Thermodynamic Considerations. International Journal of Solids and Structure 40 (22), 5973-5999.
  • [10] Kamal B., Thapa, Yazdani S., 2013. Combined damage and plasticity approach for modeling brittle materials with application to concrete. International Journal of Civil And Structural Engineering 3, 513-525.
  • [11] Lemaitre J., Desmorat R., 2005. Engineering Damage Mechanics. Springer-Verlag Berlin Heidelberg.
  • [12] Li Y., Zhu W., Fu J., Guo Y., Qi Y., 2014. A damage rheology model applied to analysis of splitting failure in underground caverns of Jinping I hydropower station. International Journal of Rock Mechanics and Mining Sciences 71.
  • [13] Molladavoodi H., 2015. Sliding and damage criteria investigation of a micromechanical damage model for closed frictional microcracks. Computers and Geotechnics 67, 135-141.
  • [14] Molladavoodi H., Mortazavi A., 2011. A damage-based numerical analysis of brittle rocks failure mechanism. Finite Elements in Analysis and Design 9, 911-1003.
  • [15] Mortazavi A., Molladavoodi H., 2012. A numerical investigation of brittle rock damage model in deep underground openings. Engineering Fracture Mechanics 90, 101-120.
  • [16] Ortiz M., 1985. A Constitutive Theory for the Inelastic Behavior of Concrete. Mechanics of materials 4 (1), 67-93.
  • [17] Ortiz M., Popov E.P., A., 1982. Physical Model for the Inelasticity of Concrete. Proceedings of Royal Society of London A383, 101-125.
  • [18] Rashid K., Abu Al-Rub, George Z. Voyiadjis. 2003. On the coupling of anisotropic damage and plasticity models for ductile materials. International Journal of Solids and Structures 40; 2611-2643.
  • [19] Salari M.R., Saeb S., Willam K.J., Patchet S.J., Carrasco R.C., 2004. A Coupled Elastoplastic Damage Model for Geomaterials. Computer Methods in Applied Mechanics and Engineering 193 (27-29), 2625-2643.
  • [20] Simo J.C., Ju. J.W., 1987. Strain-and-Stress-Based Continuum Damage Models - I. Formulation. International Journal of Solids Structures 23 (7), 821-840.
  • [21] Shao J.F., Jia Y., Kondo D., Chiarelli A.S., 2006. A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mechanics of Materials 38, 218-232.
  • [22] Voyiadjis G.Z., Taqieddin Z.N., Kattan P.I., 2008. Anisotropic Damage-Plasticity Model for Concrete. International Journal of Plasticity 24 (10), 1946-1965.
  • [23] Wang H., Li Y., Li S., Zhang Q., Liu J., 2016. An elasto-plastic damage constitutive model for jointed rock mass with an application. Geomechanics and Engineering 11 (1).
  • [24] Yazdani S., Karnawat S., 1996. A Constitutive Theory for Brittle Solids with Application to Concrete. International journal of damage mechanics 5 (1), 93-110.
  • [25] Yazdani S., Schreyer H.L., 1990. Combined Plasticity and Damage Mechanics Model for Plain Concrete. ASCE Journal of Engineering Mechanics 116 (7), 1435-1450.
  • [26] Zhang W., Cai Y., 2001. Continuum Damage Mechanics and Numerical Applications. Springer.
  • [27] Zhu Q.Z., Shao J.F., Kondo D., 2008. Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: role of the homogenization scheme. Int. J. Solids Struct. 45, 1385-405.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15b646d8-78e0-4317-bc16-481084c39cc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.