PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Paddle shape optimization for hole-flanging by paddle forming through the use of a predefined strain path in finite element analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research investigates a novel hole-flanging process by paddle forming through the use of finite element (FE) simulations. Paddles of different shapes rotating at high speeds were used to deform clamped sheets with predrilled holes at their centers. The results of the simulations show that the paddle shape determines the geometry and principal strains of the formed flanges. A convex-shaped paddle forms flanges with predominant strains in the left quadrant of the forming limit diagram (FLD). However, the convex paddle promotes unwanted bulge formation at the clamped end of the flange. A concave paddle forms flanges with no bulge but the principal strains of elements in the middle section of the flange are in the right quadrant of the FLD which indicates an increased probability for crack occurrence. An optimization of the paddle shape was conducted to prevent bulging at the clamped end while avoiding crack occurrence. The paddle shape was optimized by mapping the deformation of some elements along the flange length to a pre-defined strain path on the FLD while maintaining the bulge height within the desired geometric tolerance. The radii and lengths of the paddle edge were varied to obtain an optimum paddle shape.
Rocznik
Strony
83--98
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Chair of Mechanical Design and Manufacturing, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
  • Chair of Mechanical Design and Manufacturing, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
  • Chair of Mechanical Design and Manufacturing, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
Bibliografia
  • [1] PETEK A., GANTAR G., PEPELNJAK T., KUZMAN K., 2007, Economical and ecological aspects of single point incremental forming versus deep drawing technology, Key Engineering Materials, 344, 931–938.
  • [2] MONTANARI L., CRISTINO V.A., SILVA M.B., MARTINS P.A.F., 2013, On the relative performance of hole-flanging by incremental sheet forming and conventional press-working, Proceedings of the IMechE, 228/4, 312–322.
  • [3] ECHRIF S.B.M., HRAIRI M., 2011, Research and progress in incremental sheet forming processes, Materials and Manufacturing Processes, 26/11, 1404–1414.
  • [4] FILICE L., FRATINI L., MICARI F., 2002, Analysis of material formability in incremental forming, CIRP Annals – Manufacturing Technology, 51/1, 199–202.
  • [5] CUI Z., GAO L., 2010, Studies on hole-flanging process using multistage incremental forming, CIRP Journal of Manufacturing Science and Technology, 2/2, 124–128.
  • [6] BAMBACH M., VOSWINCKEL H., HIRT G., 2014, A new process design for performing hole-flanging operations by incremental sheet forming, Procedia Eng., 81, 2305–2310.
  • [7] ALLWOOD J.M., SHOULER D.R., 2007, Paddle forming: a novel class of sheet metal forming processes, CIRP Annals – Manufacturing Technology, 56/1, 257–260.
  • [8] MARCINIAK Z., DUNCAN J.L., HU S.J., 2002, Mechanics of sheet metal forming. Second edition, Oxford, Butterworth-Heinemann.
  • [9] ALLWOOD J.M., BRAUN D., MUSIC O., 2010, The effect of partially cut-out blanks on geometric accuracy in incremental sheet forming, Journal of Materials Processing Technology, 210/11, 1501–1510.
  • [10] BAMBACH M., CANNAMELA M., AZAOUZI M., HIRT G., BATOZ J.L., 2007, Computer-aided tool path optimization for single point incremental sheet forming, Advanced Methods in Material Forming, Springer Berlin Heidelberg.
  • [11] WITOWSKI K, FEUCHT M, STANDER N., 2011, An effective curve matching metric for parameter identification using partial mapping, 8th European LS-DYNA, Users Conference Strasbourg, 1–12.
  • [12] NOVAK N., VESENJAK M., REN Z., 2017, Computational Simulation and Optimization of Functionally Graded Auxetic Structures Made From Inverted Tetrapods, Phys. Status Solidi B, 254/12, 160075.
  • [13] UL HASSAN H., MAQBOOL F., GÜNER A., HARTMAIER A., BEN KHALIFA N., TEKKAYA A.E., 2016 Spring back prediction and reduction in deep drawing under influence of unloading modulus degradation, Int. J. Mater. Form., 9, 619–633.
  • [14] STANDER N., ROUX W., GOEL T., EGGLESTON T., CRAIG K., 2009, LS-OPT user’s manual, a design optimization and probabilistic analysis tool for the engineering analyst, Livermore Software Technology Corporation (LSTC), Livermore.
  • [15] MARTÍNEZ-DONAIRE A.J., BORREGO M., MORALES-PALMA D., CENTENO G., VALLELLANO C., 2019, Analysis of the influence of stress triaxiality on formability of hole-flanging by single-stage SPIF, International Journal of Mechanical Sciences, 151, 76–84.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15b460f1-1d04-441c-ab27-5c982eed2736
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.