PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of Banana Waste Biochar on Physiological Responses and Growth of Seashore Paspalum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current study aimed to evaluate the effect of banana waste biochar on the physiological traits and growth of Paspalum vaginatum under three water treatments (100%, 80%, and 60% of the water holding capacity (WHC) of the soil). A plastic pot experiment was done for the germination of paspalum vaginatum. The treatments were the addition of compost, banana waste biochar, or banana waste biochar and compost combination to the soil. We used multiple factor analysis (MFA) to reveal the relationship between the effect of banana waste biochar and the three water regimes on physiological data. The findings revealed that banana waste biochar had an important impacts on all traits under various water supply conditions. The photon yield of PSII of control treatment at three water regimes had the lowest response compared to amended treatments. Changes were observed in chlorophyll pigment among different treatments.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
  • Laboratory of Biotechnology, Materials and Environment, Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
  • Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco
  • Laboratory of Biotechnology, Materials and Environment, Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
Bibliografia
  • 1. Carrow R.N. 1995. Drought Resistance Aspects of Turfgrasses in the Southeast, Evapotranspiration and Crop Coefficients. Crop Sci., 35, 1685–1690.
  • 2. Katuwal K.B., Tishchenko V, Jespersen D. 2020. Assessing drought resistance in seashore paspalum genotypes using leaf gas exchange, osmotic adjustment, and rooting characteristics. Crop Sci., 61, 1–14.
  • 3. Dean D.E., Devitt D.A., Verchick L.S., Morris R.L. 1996. Turfgrass quality, growth, and water use influenced by salinity and water stress. Agron. J., 88, 844–849.
  • 4. Fetjah D., Ainlhout L.F.E., Ihssane B., Houari A., Idardare Z., Bouqbis L. 2021. Biological, physico-chemical and morphological analyses of four biochars derived from agricultural waste. Journal of Ecological Engineering, 22(4), 36-46.
  • 5. Frascari D., Zanaroli G., Motaleb M.A., Annen G., Belguith K., Borin S., et al. 2018. Integrated technological and management solutions for wastewater treatment and efficient agricultural reuse in Egypt, Morocco, and Tunisia, Solutions for Wastewater Treatment and Reuse in North Africa. Integr. Environ. Assess. Manag., 14, 447–462.
  • 6. Bezerra J., Turnhout E., Vasquez I.M., Rittl T.F., Arts B., Kuyper T.W. 2019. The promises of the Amazonian soil, shifts in discourses of Terra Preta and biochar J. Environ. Policy Plan., 21, 623–635.
  • 7. Rasa K., Heikkinen J., Hannula M., Arstila K., Kulju S., Hyväluoma J. 2018. How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioenergy. 119, 346–353.
  • 8. Ibitayo O.O., Bulter J.D., Burke M.J. 1981. Cold hardiness of bermudagrass and Paspalum vaginatum Sw. HortScience. 16, 683–684.
  • 9. Bouqbis L., Koyro H.W., Harrouni M.C. 2016. Daoud S., Ainlhout L.F.Z., Kammann C.I. Effect of Two Different Biochars on Germination and Seedlings Growth of Salad, Cress and Barley. Int. J. Agric Biosyst. Eng., 10, 872–880.
  • 10. Lichtenthaler H.K. 1987. Chlorophylls and carotenoids, Pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382.
  • 11. Abideen Z, Koyro H.W., Huchzermeyer B., Ansari R., Zulfiqar F., Gul B. 2020. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biol J., 22, 259–266.
  • 12. Vaughn S.F., Dinelli F.D., Jackson M.A., Vaughan M.M., Peterson S.C. 2018. Biochar-organic amendment mixtures added to simulated golf greens under reduced chemical fertilization increase creeping bentgrass growth. Ind Crops Prod., 111, 667–672.
  • 13. Amiri H., Ismaili A., Hosseinzadeh S.R. 2017. Influence of Vermicompost Fertilizer and Water Deficit Stress on Morpho-Physiological Features of Chickpea (Cicer arietinum L. cv. karaj). Compost Sci Util., 25, 152–165.
  • 14. Haider G., Koyro H.W., Azam F., Steffens D., Müller C., Kammann C. 2014. Biochar but not humic acid product amendment affected maize yields via improving plantsoil moisture relations. Plant Soil., 395, 141–57.
  • 15. Uzoma K.C., Inoue M., Andry H., Fujimaki H., Zahoor A., Nishihara E. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition, Cow manure biochar agronomic effects in sandy soil. Soil UseManage., 27, 205–212.
  • 16. Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K. 2012. Fluorescence parameters as early indicators of light stress in barley. J. Photochem. Photobiol. B., 112, 1–6.
  • 17. Bussotti F., Gerosa G., Digrado A., Pollastrini M. 2020. Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecol. Indic., 108, 1–10.
  • 18. Zhang J., Poudel B., Kenworthy K., Unruh J.B., Rowland D., Erickson J.E., et al. 2019. Drought responses of above-ground and below-ground characteristics in warm-season turfgrass. J. Agron. Crop. Sci., 205, 1–12.
  • 19. Xu Q., Ma X., Lv T., Bai M., Wang Z., Niu J. 2020. Effects of Water Stress on Fluorescence Parameters and Photosynthetic Characteristics of Drip Irrigation in Rice. Water. 12, 289–308.
  • 20. Huang B., Duncan R.R., Carrow R.N. 1997. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying, I. Shoot Response. Crop Sci., 37, 1858–1863.
  • 21. Marcum K.B., Engelke M.C., Morton S.J., 1995. White RH. Rooting Characteristics and Associated Drought Resistance of Zoysiagrasses. Agron. J., 87, 534–538.
  • 22. Carrow R.N. 1996. Drought Resistance Aspects of Turfgrasses in the Southeast, Root-Shoot Responses. Crop Sci. 36, 687–694.
  • 23. Singh S.K., Raja Reddy K. 2011. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. J. Photochem. Photobiol. B., 105, 40–50.
  • 24. Medrano H., Escalona J.M., Bota J., Gulias J., Flexas J. 2002. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought, Stomatal Conductance as a Reference Parameter. Ann Bot. 89, 895–905.
  • 25. Yan W., Zhong Y., Shangguan Z. 2016. A meta-analysis of leaf gas exchange and water status responses to drought. Sci Rep., 6, 1–9.
  • 26. Jaleel C.A., Manivannan P., Wahid A., Farooq M., Al-Juburi J., Somasundaram R., et al. 2009. Drought stress in plants, a review on morphological characteristics and pigments composition. Int. J. Agric. Biol., 11, 100–105.
  • 27. Jain M., Tiwary S., Gadre R. 2010. Sorbitol-induced changes in various growth and biochemical parameters in maize. Plant Soil Environ., 56, 263–267.
  • 28. Ashraf M, Harris P.J.C. 2013. Photosynthesis under stressful environments, An overview.Photosynthetica., 51, 163–190.
  • 29. Lê S., Josse J., Husson F. 2008. FactoMineR, An R Package for Multivariate Analysis. Journal of Statistical Software. 25(1), 1–18.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15b2f1f8-c68b-4366-b26a-23c1bd07c072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.