PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The steel presents a wide field of application. The abrasive wear resistance of steel relies mainly on the microstructure, hardness as well as on the abrasive material properties. Moreover, the selection of a abrasion-resistant grade of steel still seems to be a crucial and unsolved problem, especially due to the fact that the actual operating conditions can be affected by the presence of different abrasive materials. The aim of this work was to determine the effect of different abrasive grit materials i.e. garnet, corundum and carborundum on the abrasive wear result of a commonly used in industry practice steels i.e. S235, S355, C45, AISI 304 and Hardox 500. The microstructure of the steel was investigated using light optical microscopy. Moreover, hardness was measured with Vickers hardness tester. Additionally, the size and morphology of the abrasive materials were characterized. The abrasion tests were conducted with the usage of T-07 tribotester (dry sand rubber wheel). The results demonstrate that the hardness and structure of steels and hardness of abrasive grids influenced the wear results. The abrasive wear behavior of steels was dominated by microscratching and microcutting wear mechanisms. The highest mass loss was obtained for garnet, corundum, and carborundum, respectively. The usage of various abrasives results in different abrasion resistance for each tested steel grade. The AISI 304 austenitic stainless steel presents an outstanding abrasive wear resistance while usage of corundum and Hardox 500 while using a garnet as abrasive material. The C45 carbon steel was less resistant than AISI 304 for all three examined abrasives. The lowest resistance to wear in garnet and carborundum was obtained for the S235JR and S355J2 ferritic-perlitic carbon steels and in corundum for Hardox 500 which has tempered martensitic structure.
Twórcy
  • Department of Materials Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Technology of materials – Students Scientific Research Group, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Energopiast Sp. z o.o., Polna 12, 55-011 Siechnice, Poland
  • Wroclaw School of Information Technology, ul. Ks. M. Lutra 4, 54-239 Wrocław, Poland
  • Sumy State University, 2, Rymskogo-Korsakova st., 40007 Sumy, Ukraine
  • Department of Materials Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. K.-H.Z. Gahr, Microstructure and Wear of Materials, Elsevier, 1987.
  • 2. J. Rendón, M. Olsson, Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods, Wear. 267 (2009) 2055– 2061. https://doi.org/10.1016/j.wear.2009.08.005.
  • 3. M. Szala, A. Dudek, A. Maruszczyk, M. Walczak, J. Chmiel, M. Kowal, Effect of atmospheric plasma sprayed TiO2–10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance, Acta Phys. Pol. A. 136 (2019) 335–341. https://doi.org/10.12693/APhysPolA.136.335.
  • 4. W. Tarasiuk, J. Napiorkowski, K. Ligier, B. Krupicz, COMPARISON OF THE WEAR RESISTANCE OF HARDOX 500 STEEL AND 20MnCr5, Tribologia. 273 (2017) 165–170. https:// doi.org/10.5604/01.3001.0010.6254.
  • 5. M. Adamiak, G. Jacek, T. Kik, Comparison of abrasion resistance of selected constructional materials, Journal of Achievements in Materials and Manufacturing Engineering. 37 (2009).
  • 6. T. Hejwowski, Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne, Politechnika Lubelska, Lublin, 2013. http://bc.pollub. pl/dlibra/docmetadata?id=4059.
  • 7. L. Nedeloni, Z. Korka, D. Pascal, N. Kazamer, M. Nedeloni, Comparative Study on Dry Sliding Wear Resistance of Carbon Steel, Alloyed Steel and Cast Iron, in: 2018: p. 012026. https://doi.org/10.1088/1 757–899X/416/1/012026.
  • 8. M. Szala, M. Walczak, K. Pasierbiewicz, M. Kamiński, Cavitation Erosion and Sliding Wear Mechanisms of AlTiN and TiAlN Films Deposited on Stainless Steel Substrate, Coatings. 9 (2019) 340. https://doi.org/10.3390/coatings9050340.
  • 9. O.A. Zambrano, Y. Aguilar, J. Valdés, S.A. Rodríguez, J.J. Coronado, Effect of normal load on abrasive wear resistance and wear micromechanisms in FeMnAlC alloy and other austenitic steels, Wear. 348–349 (2016) 61–68. https://doi.org/10.1016/j. wear.2015.11.019.
  • 10. Md.A. Islam, T. Alam, Z. Farhat, A.M.A. Mohamed, A. Alfantazi, Effect of microstructure on the erosion behavior of carbon steel, Wear. (2014). https://doi. org/10.1016/j.wear.2014.12.004.
  • 11. T. Hejwowski, S. Szewczyk, A. Weroński, An investigation of the abrasive and erosive wear of flame-sprayed coatings, Journal of Materials Processing Technology. 106 (2000) 54–57. https://doi. org/10.1016/S0924–0136(00)00638–5.
  • 12. I. Bauer, Microstructure and Resistance to Abrasive and Corrosive Wear of a Chromosiliconized Layer on C45 Steel Substrate, Tribologia. nr 1 (2019). http://yadda.icm.edu.pl/yadda/element/bwmeta1. element.baztech-4f3450ef-c316–43cb-a8df-56c23 55b09af (accessed September 23, 2019).
  • 13. M. Szala, K. Beer-Lech, M. Walczak, A study on the corrosion of stainless steel floor drains in an indoor swimming pool, Engineering Failure Analysis. 77 (2017) 31–38. https://doi.org/10.1016/j. engfailanal.2017.02.014.
  • 14. M. Banaszkiewicz, A. Rehmus-Forc, Stress corrosion cracking of a 60MW steam turbine rotor, Engineering Failure Analysis. 51 (2015) 55–68. https:// doi.org/10.1016/j.engfailanal.2015.02.015.
  • 15. L. Łatka, M. Szala, M. Michalak, T. Pałka, Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3–13%TiO2 coatings, Acta Phys. Pol. A. 136 (2019) 342–347. https://doi.org/10.12693/APhysPolA.136.342.
  • 16. O.A. Zambrano, J.A. Gómez, J.J. Coronado, S.A. Rodríguez, The sliding wear behaviour of steels with the same hardness, Wear. 418–419 (2019) 201– 207. https://doi.org/10.1016/j.wear.2018.12.002.
  • 17. Ł. Konat, B. Białobrzeska, P. Białek, Effect of Welding Process on Microstructural and Mechanical Characteristics of Hardox 600 Steel, Metals. 7 (2017) 349. https://doi.org/10.3390/met7090349.
  • 18. B. Białobrzeska, Ł. Konat, Comparative analysis of abrasive-wear resistance of Brinar and Hardox steels, Tribologia. nr 2 (2017). http://yadda.icm. edu.pl/baztech/element/bwmeta1.element.baztec h-e4396f46-dd62–47c9-aef6-f785d1504c04 (accessed September 24, 2019).
  • 19. W. Macek, Post-failure fracture surface analysis of notched steel specimens after bending-torsion fatigue, Engineering Failure Analysis. 105 (2019) 1154–1171. https://doi.org/10.1016/j. engfailanal.2019.07.056.
  • 20. D. Fydrych, A. Świerczyńska, G. Rogalski, J. Łabanowski, Temper Bead Welding of S420G2+M Steel in Water Environment, Advances in Materials Science. 16 (2016) 5–16. https://doi.org/10.1515/ adms-2016–0018.
  • 21. W. Macek, T. Wołczański, Analysis of fracture roughness parameters of S355J2 steel and EN AW-2017A-T4 aluminium alloy, ITM Web Conf. 15 (2017) 06002. https://doi.org/10.1051/ itmconf/20171506002.
  • 22. M. Kłonica, Comparative analysis of effect of thermal shock on adhesive joint strength, Adv. Sci. Technol. Res. J. 10 (2016) 263–268. https://doi. org/10.12913/22998624/66509.
  • 23. U. Alonso Pinillos, S.R. Fernández Vidal, M. Calamaz, F.A. Girot Mata, Wear Mechanisms and Wear Model of Carbide Tools during Dry Drilling of CFRP/TiAl6V4 Stacks, Materials. 12 (2019) 2843. https://doi.org/10.3390/ma12182843.
  • 24. M. Szala, T. Hejwowski, Cavitation Erosion Resistance and Wear Mechanism Model of Flame-Sprayed Al2O3–40%TiO2/NiMoAl Cermet Coatings, Coatings. 8 (2018) 254. https://doi. org/10.3390/coatings8070254.
  • 25. M. Karpets, V. Gorban’, O. Myslyvchenko, S.V. Marchenko, N.A. Krapivka, Effect Of Nickel Content On Wear Resistance Of Cast High-entropic Alloy VCrMnFeCoNiх, Современная Электрометаллургия. 2015 (2015) 56–60. https:// doi.org/10.15407/sem2015.01.09.
  • 26. K. Dziedzic, M. Pashechko, M. Barszcz, J. Józwik, Structure and Construction Assessment of the Surface Layer of Hardfaced Coating after Friction, Adv. Sci. Technol. Res. J. 11 (2017) 253–260. https://doi.org/10.12913/22998624/76583.
  • 27. T. Hejwowski, K. Marczewska-Boczkowska, A. Kobayashi, A comparative study of electrochemical properties of metallic glasses and weld overlay coatings, Vacuum. 88 (2013) 118–123. https://doi. org/10.1016/j.vacuum.2012.02.031.
  • 28. M. Szala, T. Hejwowski, I. Lenart, Cavitation erosion resistance of Ni-Co based coatings, Adv. Sci. Technol. Res. J. 8 (2014) 36–42. https://doi. org/10.12913/22998624.1091876.
  • 29. M. Szymura, M. Różański, The influence of positioning deposited beads towards direction of abrasive movement, to resistance on grind wear plates’ abrasive wear, Welding Technology Review. 91 (2019). https://doi.org/10.26628/wtr.v91i5.1030.
  • 30. P. Budzyński, M. Kamiński, K. Pyszniak, The influence of nitrogen ion implantation on the tribological properties of piston rings made of Hardox and Raex steels, IOP Conf. Ser.: Mater. Sci. Eng. 148 (2016) 012044. https://doi.org/10.1088/1757–89 9X/148/1/012044.
  • 31. D. Janicki, Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying, Materials. 11 (2018) 75. https://doi. org/10.3390/ma11010075.
  • 32. W. Macek, M. Szala, M. Kowalski, J. Gargasas, A. Rehmus-Forc, A. Deptuła, Shot peening intensity effect on the bending fatigue strength of S235, S355 and P460 steels, IOP Conf. Ser.: Mater. Sci. Eng. in print (2019).
  • 33. M. Szala, M. Walczak, Cavitation erosion and sliding wear resistance of HVOF coatings, Welding Technology Review. 90 (2018). https://doi. org/10.26628/wtr.v90i10.964.
  • 34. B. Olofinjana, U.S. Mbamara, O. Ajayi, C. Lorenzo-Martin, E.I. Obiajuuwa, E.O.B. Ajayi, Tribological behavior of N-doped ZnO thin films by metal organic chemical vapor deposition under lubricated contacts, Friction. 5 (2017) 402–413. https://doi. org/10.1007/s40544–017–0154-x.
  • 35. L. Lu, H. Soda, A. McLean, Microstructure and mechanical properties of Fe-Cr-C eutectic composites, Materials Science and Engineering A. 347 (2003) 214–222. https://doi.org/10.1016/ S0921–5093(02)00588–9.
  • 36. S.S. Mandal, K.S. Ghosh, D.K. Mondal, Correlation between microstructure, hardness, wear and electrochemical behaviour in 8.0%, 16.0% and 20.0% (by wt) chromium white irons, Materials Chemistry and Physics. 193 (2017) 401–412. https://doi. org/10.1016/j.matchemphys.2017.02.041.
  • 37. S.W. Watson, B.W. Madsen, S.D. Cramer, Wear-corrosion study of white cast irons, Wear. 181–183, Part 2 (1995) 469–475. https://doi.org/10.1016/0 043–1648(95)90160–4.
  • 38. G.W. Stachowiak, A.W. Batchelor, Engineering tribology, Elsevier Butterworth-Heinemann, Amsterdam; Boston, 2005. http://www.engineeringvillage.com/controller/servlet/OpenURL?genre=book &isbn=9780750678360 (accessed June 12, 2013).
  • 39. J.-C. Menard, N.W. Thibault, Abrasives, in: Ullmann’s Encyclopedia of Industrial Chemistry, American Cancer Society, 2000. https://doi. org/10.1002/14356007.a01_001.
  • 40. C.-M. Chang, Y.-C. Chen, W. Wu, Microstructural and abrasive characteristics of high carbon Fe–Cr–C hardfacing alloy, Tribology International. 43 (2010) 929–934. https://doi.org/10.1016/j. triboint.2009.12.045.
  • 41. Federation of European Producers of Abrasives (FEPA), (n.d.). https://www.fepa-abrasives.com/ (accessed September 19, 2019).
  • 42. R.B. Gundlach, J.L. Parks, Influence of abrasive hardness on the wear resistance of high chromium irons, Wear. 46 (1978) 97–108. https://doi.org/10.1 016/0043–1648(78)90113–8.
  • 43. S. Frydman, Ł. Konat, G. Pękalski, Structure and hardness changes in welded joints of Hardox steels, Archives of Civil and Mechanical Engineering. 8 (2008) 15–27. https://doi.org/10.1016/ S1644–9665(12)60118–6.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15b1619d-2dde-4c7e-bc23-e4ede9f09458
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.