PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection Range of Intercept Sonar for CWFM Signals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stealth in military sonars applications may be ensured through the use of low power signals making them difficult to intercept by the enemy. In recent years, silent sonar design has been investigated by the Department of Marine Electronic Systems of the Gdansk University of Technology. This article provides an analysis of how an intercept sonar operated by the enemy can detect silent sonar signals. To that end a theoretical intercept sonar model was developed with formulas that can numerically determine the intercept ranges of silent sonar sounding signals. This was tested for a variety of applications and water salinities. Because they are also presented in charts, the results can be used to compare the intercept ranges of silent sonar and traditional pulse sonar.
Rocznik
Strony
215--230
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
  • Department of Marine Electronic Systems Faculty of Electronics, Telecommunications and Informatics Gdansk University of Technology Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Department of Marine Electronic Systems Faculty of Electronics, Telecommunications and Informatics Gdansk University of Technology Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. AINSLIE M.A., MCCOLM J.G. (1998), A Simplified Formula for Viscous and, Chemical Absorption in Sea Water, Journal of the Acoustical Society of America, 103, 3, 1671-1672.
  • 2. BOYD J.A., HARRIS D.B., KING D.D., WELCH H.W. (1961), Electronic Countermeasures, Section 23.5: Interception, Institute of Science and Technology of The University of Michigan for the U.S. Army Signal Corps under Contract DA-36-039 SC-71204.
  • 3. BRACEWELL R.N. (2000), The Fourier Transform and its Applications, (Third Edition), McGraw-Hill.
  • 4. FRIEDMAN N. (2006), The Naval Institute Guide to World Naval Weapon Systems, Naval Institute Press.
  • 5. FULLER K.L. (1990), To See and not Be Seen, IEE Proceedings-f1, 137, 1, 1-10.
  • 6. GRELOWSKA G., KOZACZKA E., KOZACZKA S., SZYM- CZAK W. (2013), Underwater Noise Generated by a Small Ship in the Shallow Sea, Archives of Acoustics, 38, 3, 351-356.
  • 7. HODGES R.P. (2010), Underwater Acoustics: Analysis, Design and Performance of Sonar, John Wiley & Sons, Ltd.
  • 8. KOTESWARA RAO S. (2006), Pseudo Linear Kalman Filter For Underwater Target Location Using Intercept Sonar Measurements, Proceedings of IEEE/ION PLANS, San Diego, 1036-1039.
  • 9. KOZACZKA E., GRELOWSKA G. (2004), Shipping noise, Archives of Acoustics, 29, 2, 169-176.
  • 10. KOZACZKA E., DOMAGALSKI J., GRELOWSKA G., GLOZA I. (2007), Identification of hydro-acoustic waves emitted from floating units during mooring tests, Polish Maritime Research, 14, 4, 54, 40-46.
  • 11. KOZACZKA E., GRELOWSKA G. (2011), Shipping low frequency noise and its propagation in shallow water, Acta Physica Polonica A, 119, 6A, 1009-1012.
  • 12. MCDONOUGH R.N., WHALEN A.D. (1995), Detection of Signals in Noise, (Second Edition), Academic Press.
  • 13. MARSZAL J. (2014), Experimental Study of Silent Sonar, Archives of Acoustics, 39, 1, 103-115.
  • 14. MARSZAL J., SALAMON R. (2012), Distance Measurement Errors in Silent FM-CW Sonar with Matched Filtering, Metrology and Measurement Systems, XIX, 2, 321-332.
  • 15. MARSZAL J., SALAMON R. (2013), Silent Sonar for Maritime Security Applications, Proceedings of Meetings on Acoustics, Acoustics Society of America, 2013, 17, 070082.
  • 16. MARSZAL J. (1992), Directivity Pattern of Active Sonars with Wideband Signals, Acoustical Imaging, Vol. 19, Plenum Press Springer, 915-919.
  • 17. NEILSON R.O. (1991), Sonar Signal Processing, Artech House.
  • 18. PACE P.E. (2009), Detecting and Classifying Low Probability of Intercept Radar, 2 ed., Artech House.
  • 19. PAPOULIS A. (2002), Probability, Random Variables and, Stochastic Processes, (Fourth Edition), McGraw- Hill.
  • 20. ROSHEN J., TESSAMMA T., UNNIKRISHNAN A. (2009a), Fractional Fourier Transform Based Chirp Detector Versus Some Conventional Detectors, International Symposium on Ocean Electronics (SYMPOL), Cochin India, 56-65.
  • 21. ROSHEN J., UNNIKRISHNAN A., TESSAMMA T. (2009b), Applications of Fractional Fourier Transform in Sonar- Signal Processing, IETE Journal of Research, 55, 1, 16-27.
  • 22. SALAMON R. (2006), Sonar Systems [in Polish], Gdańskie Towarzystwo Naukowe, Gdańsk.
  • 23. SALAMON R., MARSZAL J., SCHMIDT J., RUDNICKI M. (2011), Silent Sonar with, Matched Filtration. Hydroa- coustics, Vol. 14, Gdańsk, 199-208.
  • 24. SALAMON R., MARSZAL J. (2013), Estimating Intercept Range of Silent Sonar, [in:] Hydroacoustics of Shallow Water, E. Kozaczka, G. Grelowska [Eds.], Polish Academy of Sciences Institute of Fundamental Technological Research Warszawa, 139-158.
  • 25. SKOLNIK M. (2008), Radar Handbook, (Third Edition), McGraw-Hill Professional.
  • 26. SREEDAVY E.N., PRADEEPA R., FELIX V.P. (2009), A Novel Algorithm for Intercept Sonar Signal Detector, International Symposium on Ocean Electronics (SYMPOL), Cochin India, 3-8.
  • 27. THALES-SAFARE (2012), VELOX-M8 Passive Intercept Sonar, http://www.thales-safare.com/pdf/VELOX- M8%200ct2012L.pdf.
  • 28. URICK R.J. (1996), Principles of Underwater Sound, (Third Edition), Peninsula Pub.
  • 29. WAITE A.D. (2002), Sonar for practising engineers, (Third Edition), John Wiley&Sons.
  • 30. WARD M.K., STEVENSON M. (2000), Sonar Signal Detection and, Classification using Artificial Neural Networks, Canadian Conference on Electrical and Computer Engineering, Vol. 2, Halifax, 717-721.
  • 31. WILLETT P., REINERT J., LYNCH R. (2004), LPI Waveforms for Active Sonar?, IEEE Aerospace Conference Proceedings, 2237-2248.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15ad521e-93b3-43ea-afb6-4904c68b25be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.