PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-channeled MR brain image segmentation: A novel double optimization approach combined with clustering technique for tumor identification and tissue segmentation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Growth of cancer cells within the human body is a major outcome of the manipulation of cells and it has resulted in the deterioration of the life span of humans. The impact of cancer cells is irretrievable and it has paved the way to the formation of tumors within the human body. For achieving and developing a single-structured framework to prominently identify the tumor regions and segmenting the tissue structures specifically in human brain, a novel combinational algorithm is proposed through this paper. The algorithm has been embodied with two optimization techniques namely particle swarm optimization (PSO) and bacteria foraging optimization (BFO), wherein, PSO helps in finding the best position of global bacterium for BFO, consecutively, BFO supports the modified fuzzy c means (MFCM) algorithm by providing optimized cluster heads. Finally, MFCM segments the tissue regions and identifies the tumor portion, thereby reducing the interaction and complication experienced by a radiologist during patient diagnosis. The strength of the proposed algorithm is proven by comparing it with the state-of-the-art techniques by means of evaluation parameters like mean squared error (MSE), peak signal to noise ratio (PSNR), sensitivity, specificity, etc., Data sets used in this paper were exclusively obtained from hospital, Brain web simulator and BRATS-2013 challenge. The sensitivity and specificity values for 115 MR brain slice images.
Twórcy
  • Department of Electronics and Communication Engineering, Kalasalingam University (Kalasalingam Academy of Research and Education), Anand Nagar, Krishnankoil, Srivilliputur, Virudhunagar District, Tamilnadu 626126, India
  • Department of Electronics and Communication Engineering, Kalasalingam University (Kalasalingam Academy of Research and Education), Tamilnadu, India
autor
  • Department of Informatics, University of Leicester, Leicester, United Kingdom
  • Department of Biomedical Engineering, Kalasalingam University (Kalasalingam Academy of Research and Education), Tamilnadu, India
  • Department of Electrical & Electronics Engineering, Kalasalingam University (Kalasalingam Academy of Research and Education), Tamilnadu, India
Bibliografia
  • [1] Vishnuvarthanan G, Rajasekaran MP, Subbaraj P, Vishnuvarthanan A. An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl Soft Comput 2016;38:190–212.
  • [2] Vishnuvarthanan A, Rajasekaran MP, Govindaraj V, Zhang Y, Thiyagarajan A. An automated hybrid approach using clustering and nature inspired optimization technique for improved tumor and tissue segmentation in magnetic resonance brain images. Appl Soft Comput 2017;57:399–426.
  • [3] Shan ZY, Yue GH, Liu JZ. Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images. Neuroimage 2002;17(3):1587–98.
  • [4] Shen S, Sandham W, Granat M, Sterr A. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 2005;9(3):459–67.
  • [5] Khayati R, Vafadust M, Towhidkhah F, Nabavi SM. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Comput Biol Med 2008;38:379–90.
  • [6] Hamamci A, Kucuk N, Karaman K, Engin K, Unal G. Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans Med Imaging 2012;31(3):790–804.
  • [7] Ramathilagam S, Pandiyarajan R, Sathya A, Devi R, Kannan SR. Modified fuzzy c-means algorithm for segmentation of T1–T2- weighted brain MRI. J Comput Appl Math 2011;234(6):1578–86.
  • [8] Zhang N, Ruan S, Lebonvallet S, Liao Q, Zhu Y. Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput Vis Image Und 2011;115 (2):256–69.
  • [9] Mukhopadhyay A, Maulik U. A multiobjective approach to MR brain image segmentation. Appl Soft Comput 2011;11 (1):872–80.
  • [10] Demirhan A, Guler İ. Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation. Eng Appl Artif Intell 2011;24(2):358–67.
  • [11] Sathya PD, Kayalvizhi R. Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonance brain images. Measurement 2011;44(10):1828–48.
  • [12] Ladgham A, Hamdaoui F, Sakly A, Mtibaa A, Fast MR. brain image segmentation based on modified shuffled frog leaping algorithm. Signal Image Video 2015;9(5):1113–20.
  • [13] Priya RK, Thangaraj C, Kesavadas C, Kannan S. Fuzzy entropy-based MR brain image segmentation using modified particle swarm optimization. Int J Imaging Syst Technol 2013;23(4):281–8.
  • [14] Zhang J, Jiang W, Wang R, Wang L, Brain MR. image segmentation with spatial constrained k-mean algorithm and dual-tree complex wavelet transform. J Med Syst 2014;38:1–6.
  • [15] Gao J, Li C, Feng C, Xie M, Yin Y, Davatzikos C. Non-locally regularized segmentation of multiple sclerosis lesion from multi-channel MRI data. Magn Reson Imaging 2014;32 (8):1058–66.
  • [16] Li C, Gatenby C, Wang L, Gore JC. A robust parametric method for bias field estimation and segmentation of MR images. IEEE Conf on Comput Vis Pattern Recogn, CVPR 2009. 2009. pp. 218–23.
  • [17] Parisot S, Wells W, Chemouny S, Duffau H, Paragios N. Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs. Med Image Anal 2014;18(4):647–59.
  • [18] Ji Z, Xia Y, Sun Q, Chen Q, Feng D. Adaptive scale fuzzy local Gaussian mixture model for brain MR image segmentation. Neurocomputing 2014;134:60–9.
  • [19] Tran DC, Wu Z, Tran VH. Fast generalized fuzzy c-means using particle swarm optimization for image segmentation. International conference on neural information processing, ICONIP 2014. Springer; 2014. p. 263–70.
  • [20] Sing JK, Adhikari SK, Basu DK. A modified fuzzy c-means algorithm using scale control spatial information for MRI image segmentation in the presence of noise. J Chemom 2015;29(9):492–505.
  • [21] Verma H, Agrawal RK, Sharan A. An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation. Appl Soft Comput 2016;46:543–57.
  • [22] al-Rifaie MM, Aber A, Hemanth DJ. Deploying swarm intelligence in medical imaging identifying metastasis, micro-calcifications and brain image segmentation. IET Syst Biol 2015;9(6):234–44.
  • [23] Banerjee A, Maji P. Rough sets and stomped normal distribution for simultaneous segmentation and bias field correction in brain MR Images. IEEE Trans Image Process 2015;24(12):5764–76.
  • [24] Demirhan A, Törü M, Güler İ. Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE J Biomed Health Inform 2015;19 (4):1451–8.
  • [25] Mahalakshmi S, Velmurugan T. Detection of brain tumor by particle swarm optimization using image segmentation. Indian J Sci Technol 2015;8(22):13–9.
  • [26] Mekhmoukh A, Mokrani K. Improved fuzzy c-means based particle swarm optimization (PSO) initialization and outlier rejection with level set methods for MR brain image segmentation. Comput Methods Programs Biomed 2015;122 (2):266–81.
  • [27] De S, Bhattacharyya S, Dutta P. Automatic magnetic resonance image segmentation by fuzzy intercluster hostility index based genetic algorithm: an application. Appl Soft Comput 2016;47:669–83.
  • [28] Zhang M, Jiao L, Ma W, Ma J, Gong M. Multi-objective evolutionary fuzzy clustering for image segmentation with MOEA/D. Appl Soft Comput 2016;48:621–37.
  • [29] Sompong C, Wongthanavasu S. An efficient brain tumor segmentation based on cellular automata and improved tumor-cut algorithm. Expert Syst Appl 2017;72:231–44.
  • [30] Li Y, Jia F, Qin J. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation. Artif Intell Med 2016;73:1–13.
  • [31] Aparajeeta J, Nanda PK, Das N. Modified possibilistic fuzzy c-means algorithms for segmentation of magnetic resonance image. Appl Soft Comput 2016;41:104–19.
  • [32] Panda R, Agrawal S, Samantaray L, Abraham A. An evolutionary gray gradient algorithm for multilevel thresholding of brain MR images using soft computing techniques. Appl Soft Comput 2017;50:94–108.
  • [33] Abbasi S, Tajeripour F. Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 2017;219:526–35.
  • [34] Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal 2017;35:18–31.
  • [35] Kaya IE, Pehlivanl AC, Sekizkardeş EG, Ibrikci T. PCA based clustering for brain tumor segmentation of T1w MRI images. Comput Methods Programs Biomed 2017;140:19–28.
  • [36] Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, et al. 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 2017;41:40–54.
  • [37] Kalshetti P, Bundele M, Rahangdale P, Jangra D, Chattopadhyay C, Harit G, et al. An interactive medical image segmentation framework using iterative refinement. Comput Biol Med 2017;83:22–33.
  • [38] Kaur P. Intuitionistic fuzzy sets based credibilistic fuzzy C-means clustering for medical image segmentation. Int J Inf Technol 2017;9(4):345–51.
  • [39] Oliva D, Hinojosa S, Cuevas E, Pajares G, Avalos O, Gálvez J. Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst Appl 2017;79:164–80.
  • [40] Zhou S, Wang J, Zhang M, Cai Q, Gong Y. Correntropy-based level set method for medical image segmentation and bias correction. Neurocomputing 2017;234:216–29.
  • [41] Valverde S, Cabezas M, Roura E, González-Villà S, Pareto D, Vilanova JC, et al. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage 2017;155:159–68.
  • [42] Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S. Entropy based segmentation of tumor from brain MR images – a study with teaching learning based optimization. Pattern Recogn Lett 2017;94:87–95.
  • [43] Nayak DR, Dash R, Majhi B, Prasad V. Automated pathological brain detection system: a fast discrete curvelet transform and probabilistic neural network based approach. Expert Syst Appl 2017;88:152–64.
  • [44] Milletari F, et al. Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Und 2017;164:92–102.
  • [45] Ilunga-Mbuyamba E, Avina-Cervantes JG, Cepeda-Negrete J, Ibarra-Manzano MA, Chalopin C. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation. Comput Biol Med 2017;91:69–79.
  • [46] Gupta N, Khanna P. A non-invasive and adaptive CAD system to detect brain tumor from T2-weighted MRIs using customized Otsu's thresholding with prominent features and supervised learning. Signal Process Image Commun 2017;59:18–26.
  • [47] Guo P. Brain tissue classification method for clinical decision- support systems. Eng Appl Artif Intell 2017;64:232–41.
  • [48] Binczyk F, Stjelties B, Weber C, Goetz M, Meier-Hein K, Meinzer HP, et al. MiMSeg – an algorithm for automated detection of tumor tissue on NMR apparent diffusion coefficient maps. Inf Sci 2017;384:235–48.
  • [49] Ghribi O, Sellami L, Slima MB, Mhiri C, Dammak M, Hamida AB. Multiple sclerosis exploration based on automatic MRI modalities segmentation approach with advanced volumetric evaluations for essential feature extraction. Biomed Signal Process Control 2018;40:473–87.
  • [50] Farhi L, Yusuf A, Raza RH. Adaptive stochastic segmentation via energy-convergence for brain tumor in M. R. images. Commun Vis Image R 2017;46:303–11.
  • [51] Bowles C, Qin C, Guerrero R, Gunn R, Hammers A, Dickie DA, et al. Brain lesion segmentation through image synthesis and outlier detection. Neuroimage Clin 2017;16:643–58.
  • [52] Namburu A, Samayamantula SK, Edara SR. Generalised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentation 2017;11(9):777–85.
  • [53] Wu Z, Gao Y, Shi F, Ma G, Jewells V, Shen D. Segmenting hippocampal subfields from 3 T MRI with multi-modality images. Med Image Anal 2018;43:10–22.
  • [54] Vishnuvarthanan A, Rajasekaran MP, Govindaraj V, Zhang Y, Thiyagarajan A. Development of a combinational framework to concurrently perform tissue segmentation and tumor identification in T1-W, T2-W, FLAIR and MPR type magnetic resonance brain images. Expert Syst Appl 2018;95:280–311.
  • [55] Xiong-fa M, Ling L. An enhanced bacterial foraging optimization with adaptive elimination-dispersal probability and PSO strategy. 2016 12th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD); 2016. pp. 161–6.
  • [56] Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 2002;22(3):52–67.
  • [57] Pisano ED, Zong S, Hemminger BM, DeLuca M, Johnston RE, Muller K, et al. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J Digit Imaging 1998;11(4):193–200.
  • [58] Celik T, Tjahjadi T. Automatic image equalization and contrast enhancement using Gaussian mixture modelling. IEEE Trans Image Process 2012;21(1):145–56.
  • [59] Chang CT, Lai JZC, Jeng MD. A fuzzy k-means clustering algorithm using cluster center displacement. J Inf Sci Eng 2011;27:995–1009.
  • [60] Yang X, Fei B. A wavelet multiscale denoising algorithm for magnetic resonance (MR) images. Meas Sci Technol 2011;22 (2):1–26.
  • [61] Sikka K, Sinha N, Singh PK, Mishra AK. A fully automated algorithm under modified FCM framework for improved brain MR image segmentation. Magn Reson Imaging 2009;27(7):994–1004.
  • [64] Li Y. Wavelet-based fuzzy multiphase image segmentation method. Pattern Recogn Lett 2015;53:1–8.
  • [65] Kanas VG, Zacharaki EI, Davatzikos C, Sgarbas KN, Megalooikonomou V. A low cost approach for brain tumor segmentation based on intensity modeling and 3D random walker. Biomed Signal Process Control 2015;22:19–30.
  • [68] Govindaraj V, Murugan PR. A complete automated algorithm for segmentation of tissues and identification of tumor region in T1, T2, and FLAIR brain images using optimization and clustering techniques. Int J Imaging Syst Technol 2014;24(4):313–25.
  • [70] Lim YW, Lee SU. On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recogn 1990;23(9):935–52.
  • [71] Welstead ST. Fractal and wavelet image compression techniques. 1st ed. Washington, USA: SPIE Press; 1999.
  • [72] Gonzalez RC, Woods RE. Digital image processing. 3rd ed. Upper Saddle River, NJ, USA: Pearson Prentice Hall; 2008.
  • [73] Thomos N, Boulgouris NV, Strintzis MG. Optimized transmission of JPEG2000 streams over wireless channels. IEEE Trans Image Process 2006;15(1):54–67.
  • [74] Anbeek P, Vincken KL, Van Bochove GS, Van Osch MJP, van der Grond J. Probabilistic segmentation of brain tissue in MR imaging. Neuroimage 2005;27:795–804.
  • [75] Ortiz A, Górriz JM, Ramírez J, Salas-González D, Llamas- Elvira JM. Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies. Appl Soft Comput 2013;13(5):2668–82.
  • [76] Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, et al. Retinal vessel segmentation by improved filtering: evaluation on a new high-resolution fundus image database. IET Image Process 2013;7(4):373–83.
  • [77] Boudraa AO, Dehak SMR, Zhu YM, Pachai C, Bao YG, Grimaud J. Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering. Comput Biol Med 2000;30:23–40.
  • [78] Zijdenbos AP, Forghani R, Evans AC. Automatic ‘‘pipeline’’ analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 2002;21 (10):1280–91.
  • [79] Johnston B, Atkins MS, Mackiewich B, Anderson M. Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans Med Imaging 1996;15(2):154–69.
  • [80] Khotanlou H, Afrasiabi M. Segmentation of multiple sclerosis lesions in brain MR images using spatially constrained possibilistic fuzzy c-means classification. J Med Signals Sens 2011;1(3):149–55.
  • [81] Leemput KV, Maes F, Vandmeulen D, Colchester A, Suetens P. Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans Med Imaging 2001;20 (8):677–88.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
PL
W opisie bibliograficznym brak poz. 62, 63, 66, 67, 69.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15ab4b51-54b2-42b8-bd94-eb637bce7043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.