PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Principles of piezo-based machinery health monitoring

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper methods used for structural health monitoring of machinery parts are discussed. These methods are based on applications of piezoelectric transducers. Proposed methods are used for assessment of structural machine parts manufactured of carbon fiber reinforced plastics/polymers (CFRP) and glass fiber reinforced plastics/polymers (GFRP). The first discussed method is based on elastic wave propagation and scanning laser vibrometry. This method is based on the fact that any kind of structural discontinuities cause changes in elastic wave propagation within the structure. In the proposed approach elastic waves are generated using piezoelectric transducer and then the waves are registered using scanning laser vibrometer. Here attention was paid on an analysis of elastic wave propagation in simple composite parts and parts with complex structure. The paper presents also results of simulated damage localization. The second method is an electromechanical impedance (EMI) technique. In this case piezoelectric transducer is also effectively used. This transducer is attached to an investigated structure. Due to electromechanical coupling of piezoelectric transducer and a structure, characteristics of mechanical resonances of the structure can be registered through the measurement of electrical parameters of piezoelectric transducer. An initiation of damage causes changes in resonant characteristics of considered structures. As electrical parameter very often impedance, admittance, resistance, conductance or reactance are used. For that purpose electrical impedance analyzer is used. Three parameters have been taken for the analysis. For proposed method effective damage indexes have been proposed.
Rocznik
Tom
Strony
117--136
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Mechanics of Intelligent Structures Department, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Mechanics of Intelligent Structures Department, Fiszera 14, 80-231 Gdańsk, Poland
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Mechanics of Intelligent Structures Department, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Giurgiutiu V.: Structural Health Monitoring with piezoelectric wafer active sensors. Elsevier 2008.
  • [2] Raisutis R., Kazys R., Zukauskas E., Mazeika L., Vladisauskas A.: Application of ultrasonic guided waves for non–destructive testing of defective CFRP rods with multiple delaminations. NDT&E Int. 43(2010), 416–424.
  • [3] Raisutis R., Kazys R., Zukauskas E. and Mazeika L.: Ultrasonic air– coupled testing of square–shape CFRP composite rods by means of guided waves. NDT&E Int. 44(2011), 645–654.
  • [4] Mustapha S., Ye L., Wang D., Lu Y.: Assessment of debonding in sandwich CF/EP composite beams using A0 Lamb wave at low frequency. Compos. Struct. 93(2011), 483–491.
  • [5] Kang T. Lee D.-H. Song S-J., Kim H.-J., Jo Y.-D., Cho H-J.: Enhancement of detecting defects in pipes with focusing techniques. NDT&E Int. 44(2011), 178–187.
  • [6] Wang X., Tse P.W., Mechefske C.K., Hua M.: Experimental investigation of reflection in guided wave-based inspection for the characterization of pipeline defects. NDT&E Int. 43(2010), 365–374.
  • [7] Rathod V.T., Mahapatra D.R.: Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezoelectric transducers. NDT&E Int. 44(2011), 628–636.
  • [8] Sohn H., Dutta D., Yang J.Y., Park H.J., De Simio M., Olson S., Swenson E.: Delamination detection in composites through guided wave field image processing. Compos. Sci. Technol. 71(2011) 1250–1256.
  • [9] Chakraborty N., Rathod V.T., Mahapatra R.D., Gopalakrishnan S.: Guided wave based detection of damage in honeycomb core sandwich structures. NDT&E Int, 49(2012), 27–33.
  • [10] Rhee I., Choi E., Roh S.-K.: Guided wave propagation induced by piezoelectric actuator in bolted thin steel members KSCE. J. Civil Eng. 16(3), 2012, 398–406.
  • [11] Giurgiutiu V., Lin B., Santoni-Bottai G., Cuc A.: Space application of piezoelectric wafer active sensors for structural health monitoring. J. Intell. Mat. Syst. Str. 22(80),2011, 1359–1370.
  • [12] Diamanti K., Soutis C. Structural health monitoring techniques for aircraft composite structures. Prog. Aerosp. Sci. 46(2010), 342–352.
  • [13] Watkins R., Jha R. A modified time reversal method for Lamb wave based diagnostics of composite structures. Mech. Syst. Signal Pr. 31(2012), 345–354.
  • [14] Giurgiutiu V., Soutis C.: Enhanced composites integrity through structural health monitoring. Appl. Compos. Mat. 2012, doi: 10.1007/s 10443–011–9247–2.
  • [15] Na J.K., Blackshire J.L. Interaction of Rayleigh surface waves with a tightly closed fatigue crack. NDT&E Int. 43(2010) 432–439.
  • [16] t16 Chen X., Michaels J.E., Lee S.J., Michaels T.E.: Load–differential imaging for detection and localization of fatigue cracks using Lamb waves. NDT&E Int. 51(2012), 142–149.
  • [17] Yeum C.M., Sohn H., Ihn J.B., Lim H.J.: Instantaneous delamination detection in a composite plate using a dual piezoelectric transducer network. Compos. Struct. 94(2012), 3490–3499.
  • [18] Schubert K.J., Herrmann A.S.: On the influence of moisture absorption on Lamb wave propagation and measurements in viscoelastic CFRP using surface applied piezoelectric sensors. Compos. Struct. 94(2012), 3635–3643.
  • [19] Yu L., Momeni S., Godinez V., Giurgiutiu V., Ziehl P., Yu J.: Dual mode sensing with low-profile piezoelectric thin wafer sensors for steel bridge crack detection and diagnosis. Adv. Civil Eng. 10(2012), Hindawi doi:10.1155/2012/402179.
  • [20] Bhalla S., Gupta A., Bansal S. et al.: Ultra low-cost adaptations of electro-mechanical impedance technique for structural health monitoring. J. Intell. Mat. Syst. Str. 20(2009), 991–999.
  • [21] Pohl J., Mook G.: SHM of CFRP–structures with impedance spectroscopy and Lamb waves. Int. J. Mech. Mat. Des. 6(2010), 53–62.
  • [22] Park S., Park G., Yun C.-B. et al.: Sensor Self–diagnosis using a modified impedance model for active sensing–based structural health monitoring. Struct. Health Monit. – Int. J. 8(2009), 71–82.
  • [23] Zagrai A.N., Giurgiutiu V.: Electro-mechanical impedance method for crack detection in thin plates. J. Intel. Mat. Syst. Str. 12(2001), 709– 718.
  • [24] Giurgiutiu V. and Kropas-Hughes C.: Comparative study of neuralnetwork damage detection from a statistical set of electro-mechanical impedance spectra. Proc. SPIE 5047, 2002, doi: 10.1117/12.484050.
  • [25] Min J., Park S., Yun C.-B., Lee C.-G. and Lee C. Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity. Eng. Struct. 39(2012), 210– 220.
  • [26] Filho J.V., Baptista F.G. and Inman D.J.: Time-domain analysis of piezoelectric impedance–based structural health monitoring using multilevel wavelet decomposition. Mech. Syst. Signal Pr. 25(2011), 1550– 1558.
  • [27] Park S., Inman D.J. and Yuna C.-B.: An outlier analysis of MFCbased impedance sensing data for wireless structural health monitoring of railroad tracks. Eng. Struct. 30(2008), 2792–2799.
  • [28] Malinowski P., Wandowski T., Ostachowicz W.: Characterisation of CFRP adhesive bonds by electromechanical impedance. Proc. SPIE 9064, Health Monitoring of Structural and Biological Systems, 906415, 2014, doi: 10.1117/12.2042868.
  • [29] Park S., Kim J.-W., Lee C., Park S-K.: Impedance–based wireless debonding condition monitoring of CFRP laminated concrete structures. NDT&E Int. 44(2011), 2011232–238.
  • [30] Palomino L.V., Steffen V.: Damage metrics associated with electromechanical impedance technique for SHM applied to a riveted structure. Proc. of 20th Int. Congress of Mechanical Engineering, Brazil, Gramado 2009.
  • [31] Ostachowicz W., Kudela P., Krawczuk M., Zak A., Guided Waves in Structures for SHM: The Time – Domain Spectral Element Method. Wiley 2012.
  • [32] An Y-K., Kim M.K., Sohn H.: Airplane hot spot monitoring using integrated impedance and guided wave measurements. Struct. Control Health Monitor. 19(2012), 7, 592–604.
  • [33] Moharana S., Bhalla S.: Influence of adhesive bond layer on power and energy transduction efficiency of piezo-impedance transducer. J. Intell. Mat. Syst. Str., 2014, 1045389X14523858.
  • [34] Bhalla S., Moharana S.: A refined shear lag model for adhesively bonded piezo-impedance transducers. J. Intel. Mat. Syst. Str. 24(2013), 1, 33– 48.
  • [35] Wandowski T., Malinowski P., Ostachowicz W.: Calibration problem of AD5933 device for electromechanical impedance measurements. The e-J. Nondestruct. Test ISSN 1234-4934, 20(2).
  • [36] Park S., Yun C-B., Roh Y. et al.: Health monitoring of steel structures using impedance of thickness modes at PZT patches. J. Smart Struct. Syst. 1(2005), 4, 339–353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15aad747-b4aa-4b84-b620-7f791e822b3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.