PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of the cargo fleet vessels power plants ecological indexes by development of the exhaust gas systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modernisation of the power plants of cargo fleet vessels to satisfy the requirements set out by the International Maritime Organisation is an urgent scientific and technical problem. The article presents the results of developing a solution to this problem that focuses on the exhaust gas system. We propose the use of ejection nozzles as part of this system. It was found that when the ejection coefficient in these nozzles is n = 3, it is possible to exclude the use of SCR reactors, thus reducing the operating costs of the marine power plant. Using a mathematical modelling method, the efficiency of operation of six types of nozzle as part of the exhaust gas system was investigated, and a constructive layout was proposed for the gas ducts and inlet louvres for supplying ambient air. To increase the efficiency of the proposed system, we consider several options for intensifying heat transfer processes through the use of dimple systems in the nozzles and nozzles with swirling flow. We found that these technical solutions would make it possible to further increase the efficiency of the systems by up to 19% abs.
Rocznik
Tom
Strony
97--104
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Admiral Makarov National University of Shipbuilding, Heroyiv Ukraine av. 9, 54025 Mykolaiv, Ukraine
autor
  • Admiral Makarov National University of Shipbuilding, Heroyiv Ukraine av. 9, 54025 Mykolaiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, Heroyiv Ukraine av. 9, 54025 Mykolaiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, Heroyiv Ukraine av. 9, 54025 Mykolaiv, Ukraine
  • State Research Design & Shipbuilding Centre, Heroyiv Ukraine av. 1E, 54025 Mykolaiv, Ukraine
Bibliografia
  • 1. MARPOL 73/78 Dodatok VI (take a look) before the Convention “Rules for the protection of shipwrecking”. Retrieved from http://docs.cntd. uа/document/499014496.
  • 2. Z. Yang, Q. Tan, and P. Geng, “Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel,” Polish Maritime Research, vol. 1, no. 101, pp. 153–161, 2019. Retrieved from: https:// doi.org/10.2478/pomr-2019-0017.
  • 3. O. Cherednichenko and V. Mitienkova, “Analysis of the impact of thermochemical recuperation of waste heat on the energy efficiency of gas carriers,” Journal of Marine Science and Application, 2020. Retrieved from https://doi. org/10.1007/s11804-020-00127-5.
  • 4. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, vol. 26, no. 3, pp. 181–187, 2019. Retrieved from https://doi.org/10.2478/ pomr-2019-0059.
  • 5. Y. Kondratenko, V. Korobko, O. Korobko, G. Kondratenko, and O. Kozlov, “Green-IT approach to design and optimization of thermoacoustic waste heat utilization plant based on soft computing,” Studies in Systems, Decision and Control, 287–311, 2017. Retrieved from http://doi.org/ doi:10.1007/978-3-319-55595-9_14.
  • 6. Y. Kondratenko, S. Serbin, V. Korobko, and O. Korobko, “Optimisation of bi-directional pulse turbine for waste heat utilization plant based on green IT paradigm” Studies in Systems, Decision and Control, pp. 469–485, 2018. http:// doi.org/doi:10.1007/978-3-030-00253-4_20.
  • 7. V. Kornienko, R. Radchenko, A. Stachel, A. Andreev, and M. Pyrysunko, “Correlations for pollution on condensing surfaces of exhaust gas boilers with waterfuel emulsion combustion,” Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, Springer, Cham, pp. 530–539, 2020. Retrieved from http://doi:10.1007/978-3-030-40724-7_54.
  • 8. Product manual scrubber (scrubber) (2013). Wartsila, 98 p. Retrieved from https://cdn.wartsila.com/docs/defaultsource/local-files/russia/products/project-guides/wärtsiläscrubber-product-guide-rev-c_rus.pdf?sfvrsn=73676f44_2.
  • 9. Unit for reducing NOx emissions by technology SCR by WÄRTSILÄ. Retrieved from https://cdn.wartsila.com/docs/ default-source/local-files/russia/products/nox_reducersrus.pdf?sfvrsn=f1696f44_2.
  • 10. O.V. Serazhutdinov and V.A. Chistyakov, “Technologies for the reduction of nitrogen oxides in the exhaust gases of marine diesel engines” Marine Intelligent Technology, №4-1(30), pp. 23–28, 2015.
  • 11. V.V. Le and T.H. Truong, “A simulation study to assess the economic, energy and emissions characteristics of a marine engine equipped with exhaust gas recirculation,” 1st International Conference on Sustainable Manufacturing, Materials and Technologies, 2020. Retrieved from http:// doi.org/doi:10.1063/5.0000135.
  • 12. R. Radchenko, M. Pyrysunko, V. Kornienko, R. Patyk, and O. Moskovko, “Improving the ecological and energy efficiency of internal combustion engines by ejector chiller using recirculation gas heat,” ICTM 2020, Advances in Intelligent Systems and Computing, Springer, Cham, 10 p., 2020.
  • 13. Y. Zhao, Y. Fan, K. Fagerholt, and J. Zhou, “Reducing sulfur and nitrogen emissions in shipping economically” Transportation Research Part D, Transport and Environment, vol. 90, 2021. Retrieved from https://doi.org/10.1016/j. trd.2020.102641.
  • 14. New system PureSOx Express. Retrieved from https://www. alfalaval.ua/media/news/2020/new-alfa-laval-puresoxexpress-offers-easy-access-to-sox-scrubber-advantages/.
  • 15. Y.-S. Choi, and T.-W. Lim, “Numerical simulation and validation in scrubber wash water discharge from ships,” Journal of Marine Science and Engineering, vol. 8, no. 4, p. 272, 2020. Retrieved from http://doi.org/doi:10.3390/ jmse8040272.
  • 16. S. Endres et al., “A new perspective at the ship-airsea-interface: The environmental impacts of exhaust gas scrubber discharge,” Frontiers in Marine Science, vol. 5, 2018. Retrieved from http://doi.org/doi:10.3389/ fmars.2018.00139.
  • 17. H. Xi, S. Zhou, and Z. Zhang, “A novel method using Na2 S2 O8 as an oxidant to simultaneously absorb SO2 and NO from marine diesel engine exhaust gases,” Energy & Fuels, 2020. Retrieved from http://doi.org/doi:10.1021/acs. energyfuels.9b03334.
  • 18. Y.A. Bystrov, S.A. Isayev, N.A. Kudryavtsev, and A. I. Leont’yev, Numerical Simulation of Heat Transfer Vortex Intensification in the Pipe Packs. St. Petersburg: Shipbuilding, 2005.
  • 19. T.B. Gatski, M.Y. Hussaini, and J.L. Lumley, Simulation and Modelling of Turbulent Flows. Oxford, New York: Oxford University Press, 314 p., 1996. Retrieved from https://www.academia.edu/10100418/SIMULATION_ AND_MODELLING_OF_TURBULENT_FLOWS (last accessed: 20.01.2021).
  • 20. S. Sarkar and L. Balakrishnan, Application of a ReynoldsStress Turbulence Model to the Compressible Shear Layer, 1990. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/ u2/a227097.pdf (last accessed: 20.01.2021).
  • 21. Introducing code_Saturne. Retrieved from https://www. code-saturne.org/cms/. 22. Computational Fluid Dynamics: CFD Software. Retrieved from https://www.simscale.com/product/cfd/.
  • 23. B.V. Dymo, A.Y. Voloshyn, A.E. Yepifanov, and V.V. Kuznetsov, “Increase of ship power plants gas-air cooler efficiency,” Problemele Energeticii Regionale, vol. 2, no. 34, pp. 113–124, 2017.
  • 24. B.V. Dymo, A.Y. Voloshyn, and V.I. Kharchenko, “The research of gas-dynamic processes in the gas-air cooler of the ship power plant,” Zbirnyk Naukovykh Prats’ NUK, vol. 6, pp. 81–89, 2010.
  • 25. A.A Khalatov, Heat Transfer and Fluid Mechanics over Surface Indentations (Dimples). Kiev: National Academy of Sciences of Ukraine, Institute of Engineering Thermophysics, 64 p., 2005.
  • 26. V.V. Kuznetsov, “Generalization of the rules in the heat transfer of swirling flows inside the tubular channels of power plants heat transfer devices,” Collection of Scientific Papers of Admiral Makarov National University of Shipbuilding vol. 5, pp. 46–52, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15a79da4-a02b-46ec-b781-4186e7d77fdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.