Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electromagnetic wave logging-while-drilling (LWD) tool plays an important role in unconventional oil and gas exploitation and deep-sea oil and gas resource exploration process. The reliability such as reliable life and durability of the tool can control drilling efficiency and production cost in extreme environmental conditions. In this paper, main faults of the electromagnetic wave LWD tool have been analyzed when it working to the drilling site. Failure time of antenna coils, circuit boards, and power supply have been recorded. Therefore, failure mode and failure mechanism can be analyzed of the tool. Secondly, a fault analysis model of electromagnetic wave LWD tool based on Weibull distribution model has been built up, and by using this fault analysis model the reliable life and the remaining useful life of antenna system can be calculated. The last, the goodness-of-ft test can be operated to Weibull distribution model by using Kolmogorov–Smirnov test. Study results show that the reliability and the law of fault occurrence of electromagnetic wave LWD tool can be directly reflected. And it has practical significance to reliability evaluation of the instrument system and joint optimization of safe operation and maintenance of the tool.
Wydawca
Czasopismo
Rocznik
Tom
Strony
669--676
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
autor
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
autor
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
autor
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
autor
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
autor
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
Bibliografia
- 1. Bittar MS, Klein JD, Randy B, Hu G, Wu M, Pitcher JL et al (2009) A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation. SPE Reservoir Eval Eng 12(2):270–279
- 2. Dey A, Miyani G, Sil A (2020) Application of artificial neural network (ANN) for estimating reliable service life of reinforced concrete (RC) structure bookkeeping factors responsible for deterioration mechanism. Soft Comput 24:2109–2123
- 3. He L, Wen JZ, Chang L, Ming LJ, Sang JY (2020) A novel goodness of fit test spectrum sensing using extreme eigenvalues. Chin J Electron 29(6):1201–1206
- 4. Jalobeanu A, Blanc-Féraud L, Zerubia J (2002) Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method. Pattern Recogn 35(2):341–352
- 5. Kam OM, Noël S, Ramenah H, Kasser P, Tanougast C (2021) Comparative weibull distribution methods for reliable global solar irradiance assessment in France areas. Renew Energy 165(1–3):194–210
- 6. Kim J (2020) Implementation of a goodness-of-fit test through Khmaladze martingale transformation. Comput Stat 35:993–2017
- 7. Kovalev MS, Utkin LV (2020) A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov bounds. Neural Netw 132:1–18
- 8. Li H, Yan ZD, Liu CB, Jiang YB (2019) Numerical simulation of azimuthal resistivity LWD instrument responses. J China Univ Petrol Edit Nat Sci 43(1):42–52
- 9. Strzelecki P (2021) Determination of fatigue life for low probability of failure for different stress levels using 3-parameter Weibull distribution. Int J Fatigue 145:106080
- 10. Tsui KL, Zhao Y, Wang D (2019) Big data opportunities: system health monitoring and management. IEEE Access 7:68853–68867
- 11. Wang L, Liu J, Qian F (2021) Wind speed frequency distribution modeling and wind energy resource assessment based on polynomial regression model. Int J Elect Power Energy Syst 130(1):106964
- 12. Wu ZG, Wang L, Fan YR, Deng SG, Huang R, Xing T (2020) Detection performance of azimuthal electromagnetic logging while drilling tool in anisotropic media. Appl Geophys 17(1):1–12
- 13. Yan L, Shen Q, Lu H, Wang H, Fu X, Chen J (2020) Inversion and uncertainty assessment of ultra-deep azimuthal resistivity logging-while-drilling measurements using particle swarm optimization. J Appl Geophys 178(2):104059
- 14. Zhou Y, Cao J, Cui Y (2019) Application of a graphical method to the domain switching of ferroelectrics subjected to electromechanical loading. Mech Mater 137(6):103078
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15a6fd6b-30ff-4629-ae80-89671ea7ba62