PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Problem of Material Fracture Prediction in Cross Rolling Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of material fracture prediction in metal forming processes. It was found that the application of well-established solutions for ductile fracture prediction to the modelling of cross rolling processes leads to serious errors. These errors result from the fact that the limit value of the damage function determined via uniaxial tensile and compression tests is too low. Therefore, it is necessary to devise a new test in which the state of stress is similar to that in a cross wedge rolling process characterized by the occurrence of alternating compressive and tensile stresses.
Twórcy
  • Department of Computer Modelling and Metal Forming Technologies, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Computer Modelling and Metal Forming Technologies, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Computer Modelling and Metal Forming Technologies, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Computer Modelling and Metal Forming Technologies, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Pater Z. and Samołyk G. Podstawy teorii i analizy obróbki plastycznej metali. Wydawnictwo Politechniki Lubelskiej, 2011.
  • 2. Gabryszewski Z. and Gronostajski J. Mechanika procesów obróbki plastycznej. PWN, 1991.
  • 3. Kim S.W. and Lee Y.S. Comparative study on failure prediction in warm forming processes of Mg alloy sheet by the FEM and ductile fracture criteria. Metallurgical and Materials Transactions B, 45(2), 2014, 445-453.
  • 4. Li H., Fu M.W., Lu J. and Yang H. Ductile fracture: Experiments and computations. International Journal of Plasticity, 27(2), 2014, 147-180.
  • 5. Yan Y., Wang H. and Wan M. Prediction of fracture in press bend forming of aluminum alloy high-stiffener integral panels. Computational Materials Science, 50(7), 2011, 2232-2244.
  • 6. Wu Z., Li S., Zhang W. and Wang W. Ductile fracture simulation of hydropiercing process based on various criteria in 3D modeling. Materials and Design, 31(8), 2010, 3661-3671.
  • 7. Otzurk F. and Lee D. A new methodology for ductile fracture criteria to predict the forming limits. Journal of Materials Engineering and Performance, 62(2), 2007, 224-228.
  • 8. Otzurk F. and Lee D. Analysis of forming limits using ductile fracture criteria. Journal of Materials Processing Technology, 147(3), 2004, 397-404.
  • 9. Hambli R. and Reszka M. Fracture criteria identification using an inverse technique method and blanking experiment. International Journal of Mechanical Sciences, 44(7), 2002, 1349-1361.
  • 10. Kraisnik M., Vilotic D., Sidanin L. and Stefanovic M. Various approaches to defining the criteria of ductile crack in cold bulk forming processes. Annals of Faculty Engineering Hunedoara – International Journal of Engineering, 13(2), 2015, 213-218.
  • 11. Wang Z., Sun S., Wang B., Shi Z. and Fu W. Importance and role of grain size in free surface cracking prediction of heavy forgings. Materials Science & Engineering A, 625(2), 2015, 321-330.
  • 12. Novella M.F., Ghiotti A., Bruschi S. and Bariani P.F. Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082- T6 bars. Journal of Materials Processing Technology, 222(8), 2015, 259-267.
  • 13. Kim H.K. and Kim W.J. Failure prediction of magnesium alloy sheets deforming at warm temperatures using the Zener-Holloman parameter. Mechanics of Materials, 42(3), 2010, 293-303.
  • 14. Bjorklund O., Govik A. and Nilsson L. Prediction of fracture in a dual-phase steel subjected to non-linear straining. Journal of Materials Processing Technology, 214(11), 2014, 2748-2758.
  • 15. Yu S. and Feng W. Experimental research on ductile fracture criterion in metal forming. Frontiers of Mechanical Engineering, 6(3), 2011, 308-311.
  • 16. Coppola T., Cortese L. and Folgarait P. The effect of stress invariants on ductile fracture limit in steels. Engineering Fracture Mechanics, 76(9), 2009, 1288-1302.
  • 17. Goijarets A.M., Govaert L.E. and Baaijens F.P.T. Evaluation of ductile fracture models for different metals in blanking. Journal of Materials Processing Technology, 110(3), 2001, 312-323.
  • 18. Bjorklund O., Larsson R. and Nilsson L. Failure of high strength steel sheets: Experiments and modelling. Journal of Materials Processing Technology, 213(7), 2013, 1103-1117.
  • 19. Dunand M. and Mohr D. Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals. International Journal of Solids and Structures, 47(9), 2010, 1130-1143.
  • 20. Yu S. and Zhao J. Investigation on blanking of thick sheet metal using the ductile fracture initiation and propagation criterion. Journal of Shanghai Jiaotong University (Science), 17(5), 2012, 531-536.
  • 21. Cesar de Sa J.M.A., Areias P.M.A. and Zheng C. Damage modelling in metal forming problems using an implicit non-local gradient model. Computer Methods in Applied Mechanics and Engineering, 195(48-49), 2006, 6646-6660.
  • 22. Kim J., Kim S.W., Song W.J. and Kang B.S. Analytical and numerical approach to prediction of forming limit in tube hydroforming. International Journal of Mechanical Sciences, 47(7), 2005, 1023-1037.
  • 23. Lee Y.W. and Wierzbicki T. Fracture prediction of thin plates under localized impulsive loading. Part II: discing and petalling. International Journal of Impact Engineering, 31(10), 2005, 1277-1308.
  • 24. Takuda H., Mori K. and Hatta N. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. Journal of Materials Processing Technology, 95(1-3), 1999, 116-121.
  • 25. Zhu Y., Zeng W., Zhang F., Zhao Y., Zhang X. and Wang K. A new methodology for prediction of fracture initiation in hot compression of Ti40 titanium alloy. Materials Science and Engineering A, 553(9), 2012, 112-118.
  • 26. Watanabe A., Fujikawa S., Ikeda A. and Shiga N. Prediction of ductile fracture in cold forging. Procedia Engineering, 81, 2014, 425-430.
  • 27. Landre J., Pertence A., Cetlin P.R., Rodrigues J.M.C. and Martins P.A.F. On the utilization of ductile fracture criteria in cold forging. Finite Elements in Analysis and Design, 39(3), 2003, 175-186.
  • 28. MacCormack C. and Monaghan J. Failure analysis of cold forging dies using FEA. Journal of Materials Processing Technology, 117(1-2), 2001, 209-215.
  • 29. Venkata R.N., Dixit P.M. and Lal G.K. Ductile fracture criteria and its prediction in axisymmetric drawing. International Journal of Machine Tools & Manufacture, 40(1), 2000, 95-111.
  • 30. Pater Z. Cross-wedge rolling. In Comprehensive Materials Processing. Ed., Elsevier Ltd., 2014.
  • 31. Lu L., Wang Z. and Wang F. Simulation of tube forming process in Mannesmann mill. Journal of Shanghai Jiaotong University (Science), 16(3), 2011, 281-185.
  • 32. Ghiotti A., Fanini S., Bruschi S. and Bariani P.F. Modelling of Mannesmann effect. CIRP Annals – Manufacturing Technology, 58(1), 2009, 255-258.
  • 33. Pater Z., Tomczak J. and Bulzak T. Analysis of a cross wedge rolling process for producing drive shafts. The International Journal of Advanced Manufacturing Technology,94(9-12), 2018, 3075-3083.
  • 34. Pater Z. Sposób wyznaczania właściwości plastycznych materiałów metodą obciskania obrotowego narzędziami płaskimi. Patent RP No 220786, 2014.
  • 35. Pater Z. Sposób wyznaczania własności plastycznych materiałów metodą obciskania obrotowego dwoma walcami. Patent RP No 220753, 2015.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-159b4ade-fa0f-4418-ab0c-a44887de122d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.