PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: Experimental studies and particle mechanics approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Generally, in many cases of rock engineering, the openings often constructed in rock-mass containing non-persistent joints. However, comparing with the previous works, few studies investigate the failure or damage due to the crack propagation and coalescence around an opening. Based on the uniaxial compression tests and particle flow code (PFC) the interaction effect of opening and joints on the crack coalescence behavior around an opening are investigated in this study. From the view of experimental and numerical results, strength parameters are mainly effected by joints (inclination and distance). Specifically, the uniaxial compressive strength of jointed specimen (UCSJ) and elastic modulus of jointed specimen (EJ) of specimens decrease for 0° ≤ α ≤ 45° and increase for α > 45°. UCSJ and EJ increases with increasing joint distance (d) for all joint inclination angel (α) values, with the highest and lowest strengths obtained for d = 50 mm and d = 20 mm, respectively. The opening has a great influence on the failure mode of jointed specimen. Unlike previous results, in this study, jointed specimens present four new kinds of failure modes: Mode-I (horizontally symmetrical splitting failure); Mode-II (stepped failure at opening sides); Mode-III (failure through a plane); Mode-IV (mixed failure). The strength parameters and failure modes in the numerically simulated and experimental results are in good agreement, and the results are expected to be useful in predicting the stability of an opening in a non-persistently jointed mass.
Rocznik
Strony
198--214
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
  • School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth 6009, Australia
autor
  • School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
autor
  • School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth 6009, Australia
autor
  • School of Highway, Chang'an University, Xi'an 710064, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
Bibliografia
  • [1] L.E. Vallejo, The brittle and ductile behavior of clay samples containing a crack under mixed mode loading, Theoretical and Applied Fracture Mechanics 10 (1988) 73–78.
  • [2] A.V. Dyskin, E. Sahouryeh, R.J. Jewell, Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression, Engineering Fracture Mechanics 70 (15) (2003) 2115–2136.
  • [3] E. Hoek, Z.T. Bieniawski, Brittle fracture propagation in rock under compression, International Journal of Fracture 1 (3) (1965) 137–155.
  • [4] Y.P. Li, L.Z. Chen, Y.H. Wang, Experimental research on pre-cracked marble under compression, International Journal of Solids and Structures 42 (9/10) (2005) 2505–2516.
  • [5] S.Q. Yang, H.W. Jing, Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression, International Journal of Fracture 168 (2011) 227–250.
  • [6] N.Y. Wong, Crack Coalescence in Molded Gypsum and Carrara Marble, (Ph.D. thesis), Massachusetts Institute of Technology, 2008.
  • [7] H.Q. Li, L.N.Y. Wong, Influence of flaw inclination angle and loading condition on crack initiation and propagation, International Journal of Solids and Structures 49 (2012) 2482–2499.
  • [8] B. Shen, The mechanism of fracture coalescence in compression experimental study and numerical simulation, Engineering Fracture Mechanics 51 (1) (1995) 73–85.
  • [9] A. Bobet, H.H. Einstein, Fracture coalescence in rock-type materials under uniaxial and biaxial compression, International Journal of Rock Mechanics and Mining Sciences 35 (7) (1998) 863–888.
  • [10] M. Sagong, A. Bobet, Coalescence of multiple flaws in a rock-model material in uniaxial compression, International Journal of Rock Mechanics and Mining Sciences 39 (2) (2002) 229–241.
  • [11] H. Lee, S. Jeon, An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression, International Journal of Solids and Structures 48 (6) (2011) 979–999.
  • [12] X.P. Zhang, Q.S. Liu, S.C. Wu, X.H. Tang, Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression, Engineering Geology 199 (2015) 74– 90.
  • [13] C.A. Tang, Numerical simulation of progressive rock failure and associated seismicity, International Journal of Rock Mechanics and Mining Sciences 34 (2) (1997) 249–261.
  • [14] N. Moes, T. Belyschko, Extended finite element method for cohesive crack growth, Engineering Fracture Mechanics 69 (2002) 813–833.
  • [15] P. Areias, D. Dias-da-Costa, J. Alfaiate, E. Júlio, Arbitrary bi-dimensional finite strain cohesive crack propagation, Computational Mechanics 45 (1) (2009) 61–75.
  • [16] R. Pramanik, D. Deb, SPH procedures for modeling multiple intersecting discontinuities in geomaterial, International Journal for Numerical and Analytical Methods 39 (4) (2015) 343–367.
  • [17] S.R. Beiseel, C.A. Gerlach, G.R. Johnson, Hypervelocity impact computations with finite elements and meshfree particles, International Journal of Impact Engineering 33 (2006) 80–90.
  • [18] Y.J. Ning, J. Yang, X.M. An, G.W. Ma, Modelling rock fracturing and blast induced rock mass failure via advanced discretization within the discontinuous deformation analysis framework, Computers and Geotechnics 38 (1) (2010) 40–49.
  • [19] Y.J. Ning, X.M. An, G.W. Ma, Footwall slope stability analysis with the numerical manifold method, International Journal of Rock Mechanics and Mining Sciences 48 (2011) 964–975.
  • [20] R.H. Cao, P. Cao, X. Fan, X.G. Xiong, H. Lin, An experimental and numerical study on mechanical behavior of ubiquitous- joint brittle rock-like specimens under uniaxial compression, Rock Mechanics and Rock Engineering 49 (2016) 4319–4338.
  • [21] R.H. Cao, P. Cao, H. Lin, C.Z. Pu, K. Ou, Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach, Rock Mechanics and Rock Engineering 49 (3) (2016) 763–783.
  • [22] S.Q. Yang, Y.H. Huang, H.W. Jing, X.R. Liu, Discrete element modeling on fracture coalescence behavior of red sandstone containing two un-parallel fissures under uniaxial compression, Engineering Geology 178 (2014) 28–48.
  • [23] C. Cheng, X. Chen, S.F. Zhang, Multi-peak deformation behavior of jointed rock mass under uniaxial compression: insight from particle flow modeling, Engineering Geology 213 (2016) 25–45.
  • [24] X. Fan, P.H.S.W. Kulatilake, X. Chen, Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: a particle mechanics approach, Engineering Geology 190 (14) (2015) 17–32.
  • [25] R.H.C. Wong, P. Lin, C.A. Tang, K.T. Chau, Creeping damage around an opening in rock-like material containing non- persistent joints, Engineering Fracture Mechanics 69 (2002) 2015–2027.
  • [26] M. Souley, F. Homand, S. Pepa, D. Hoxha, Damage-induced permeability changes in granite: a case example at the URL in Canada, International Journal of Rock Mechanics and Mining Sciences 38 (2001) 297–310.
  • [27] A. Bobet, H.H. Einstein, Numerical modeling of fracture coalescence in a model rock material, International Journal of Fracture 92 (3) (1998) 221–252.
  • [28] L.N.Y. Wong, H.H. Einstein, Crack coalescence in molded gypsum and Carrara marble. Part 1. Macroscopic observations and interpretation, Rock Mechanics and Rock Engineering 42 (3) (2009) 475–511.
  • [29] M. Prudencio, M. Van Sint Jan, Strength and failure modes of rock mass models with non-persistent joints, International Journal of Rock Mechanics and Mining Sciences 44 (2007) 890–902.
  • [30] P. Cao, T.Y. Liu, C.Z. Pu, H. Lin, Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression, Engineering Geology 187 (17) (2015) 113–121.
  • [31] Y.L. Zhao, L.Y. Zhang, W.J. Wang, C.Z. Pu, W. Wan, J.Z. Tang, Cracking and stress–strain behavior of rock-like material containing two flaws under uniaxial compression, Rock Mechanics and Rock Engineering 49 (7) (2016) 2665–2687.
  • [32] E.G. Bombolakis, Photoelastic study of initial stages of brittle fracture in compression, Tectonophysics 6 (6) (1968) 461–473.
  • [33] X.X. Yang, H.W. Jing, C.A. Tang, S.Q. Yang, Effect of parallel joint interaction on mechanical behavior of jointed rock mass models, International Journal of Rock Mechanics and Mining Sciences 92 (2017) 40–53.
  • [34] N. Cho, C. Martin, D. Sego, A clumped particle model for rock, International Journal of Rock Mechanics and Mining Sciences 44 (7) (2007) 997–1010.
  • [35] D.O. Potyondy, Simulating stress corrosion with a bonded- particle model for rock, International Journal of Rock Mechanics and Mining Sciences 44 (5) (2007) 677–691.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-159496ac-73b8-4070-a4a9-e1b09a86db3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.