PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical fractionation of heavy metals in sediments of the Red Sea, Saudi Arabia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The geochemical fractionation of heavy metals, including Mn, Fe, Cu, Pb, Zn, Cd and Ni, collected from the surface sediments of the Jeddah coastal zone of the Red Sea in Saudi Arabia was determined using a sequential extraction technique. The data obtained from the five fractions indicated that the concentration of metals varies among different locations in the study area. The total metal concentrations (%) in the exchangeable (F1), carbonate (F2), reducible (F3) and organic-bound (F4) fractions were measured to determine the mobility of each studied metal. The sum of the two fractions F3 and F4 represented 70% of the Cu, 72% of the Zn and 36% of the Pb. However, the sum of the three fractions F2, F3 and F4 represented 76%, 74%, 68% and 58% of the Cd, Ni, Fe and Mn, respectively. Approximately 46% of the total copper was related to organics, which could reflect a high mobility of copper in these sediments. The maximum mobility of metals in the sediments was confirmed by the bioavailability factor (BF), which was within the ranges of 0.47-0.93, 0.34-0.92, 0.62-0.95, 0.69-0.95, 0.24-0.82, 0.54-0.98, and 0.60-0.95 for Fe, Mn, Cu, Zn, Pb, Cd, and Ni, respectively. Based on the BF, the metals exhibited the following order: Cu ≈ Zn > Cd ≈ Ni ≈ Fe > Mn > Pb. The high levels of BF for the studied metals could reflect the potential for toxic metals to be easily released into the marine environment. The risk assessment code for Cd showed a medium risk in five sediment samples of the northern and southern regions and a high risk to the aquatic environment in the other sediment samples. However, the speciation of Fe, Mn, Cu, Zn, Pb and Ni in the studied sediments exhibited low to medium risks to the aquatic environment.
Słowa kluczowe
Czasopismo
Rocznik
Strony
31--44
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
  • [1] Abu-Zied, R. H., Al-Dubai, T. A. M., Bantan, R. A., 2016. Environmental conditions of shallow waters alongside the southern Corniche of Jeddah based on benthic foraminifera, physico-chemical parameters and heavy metals. J. Foramin. Res. 46, 149-170, http://dx.doi.org/10.2113/gsjfr.46.2.149.
  • [2] Abu-Zied, R. H., Basaham, A. S., El Sayed, M. A., 2013. Effect of municipal wastewaters on bottom sediment geochemistry and benthic foraminifera of two Red Sea coastal inlets, Jeddah, Saudi Arabia. Environ. Earth Sci. 68, 451-469, http://dx.doi.org/10.1007/s12665-012-1751-7.
  • [3] Abu-Zied, R. H., Hariri, M. S., 2016. Geochemistry and benthic foraminifera of the nearshore sediments from Yanbu to Al-Lith, eastern Red Sea coast, Saudi Arabia. Arab. J. Geosci. 9, 245, http://dx.doi.org/10.1007/s12517-015-2274-9.
  • [4] Ahmadipour, F., Bahramifar, N., Ghasempouri, S. M., 2014. Fractionation and mobility of cadmium and lead in soils of Amol area in Iran, using the modified BCR sequential extraction method. Chem. Spec. Bioavailab. 26 (1), 31-36, http://dx.doi.org/10.3184/095422914X13884321932037.
  • [5] Al-Mur, B. A., Quicksall, A. N., Al-Ansari, A. M. A., 2017. Spatial and temporal distribution of heavy metals in coastal core sediments from the Red Sea, Saudi Arabia. Oceanologia 59 (3), 262-270, http://dx.doi.org/10.1016/j.oceano.2017.03.003.
  • [6] Badr, N. B. E., El-Fiky, A. A., Mostafa, Al. R., Al-Mur, B. A., 2009. Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ. Monit. Assess. 155, 509-526, http://dx.doi.org/10.1007/s10661-008-0452-x.
  • [7] Bakircioglu, D., Kurtulus, Y. B., Ibar, H., 2011. Investigation of trace elements in agricultural soils by BCR sequential extraction method and its transfer to wheat plants. Environ. Monit. Assess. 175, 303-314, http://dx.doi.org/10.1007/s10661-010-1513-5.
  • [8] Bielicka-Giełdoń, A., Ryłko, E., Żamojć, K., 2013. Distribution, bioavailability and fractionation of metallic elements in allotment garden soils using the BCR sequential extraction procedure. Pol. J. Environ. Stud. 22 (4), 1013-1021.
  • [9] Chester, R. A., Thomas, F. J., Lin, A. S., Basaham, G., Jacinto, 1988. The solid state speciation of copper in surface water particulates and oceanic sediments. Mar. Chem. 24, 261-292, http://dx.doi.org/10.1016/0304-4203(88)90036-9.
  • [10] El Zokm, G. M., Okbah, M. A., Younis, A. M., 2015. Assessment of heavy metals pollution using AVS-SEM and fractionation techniques in Edku Lagoon sediments, Mediterranean Sea. J. Environ. Sci. Health A 50, 571-584, http://dx.doi.org/10.1080/10934529.2015.994945.
  • [11] El-Metwally, M. E. A., Madkour, A. G., Fouad, R. R., Mohamedein, L. I., Nour Eldine, H. A., Dar, M. A., El-Moselhy, Kh. M., 2017. Assessment the leachable heavy metals and ecological risk in the surface sediments inside the Red Sea ports of Egypt. Int. J. Mar. Sci. 7 (23), 214-228, http://dx.doi.org/10.5376/ijms.2017.07.0023.
  • [12] El-Moselhy, K. M., Gabal, M. N., 2004. Trace metals in water, sediments and marine organisms from the northern part of the Gulf of Suez, Red Sea. J. Mar. Syst. 46, 39-46, http://dx.doi.org/10.1016/j.jmarsys.2003.11.014.
  • [13] El-Said, G. F., Youssef, D. H., 2013. Ecotoxicological impact assessment of some heavy metals and their distribution in some fractions of mangrove sediments from Red Sea, Egypt. Environ. Monit. Assess. 185, 393-404, http://dx.doi.org/10.1007/s10661-012-2561-9.
  • [14] Filgueiras, A. V., Lavilla, I., Bendicho, C., 2002. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 4, 823-857, http://dx.doi.org/10.1039/B207574C.
  • [15] Folk, R. L., 1974. Petrography of Sedimentary Rocks. Univ. Texas, Hemphill, Austin, TX, 182 pp.
  • [16] Gaudette, H. E., Flight, W. R., 1974. An inexpensive titration method for the determination of organic carbon in recent sediments. J. Sediment. Petrol. 44 (1), 249-253, http://dx.doi.org/10.1306/74D729D7-2B21-11D7-8648000102C1865D.
  • [17] Gleyzes, C., Tellier, S., Astruc, M., 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trac-Trend. Anal. Chem. 21 (6), 451-467, http://dx.doi.org/10.1016/S0165-9936(02)00603-9.
  • [18] Hakanson, L., 1992. Sediment variability. In: Burton (Eds.), Sediment Toxicity Assessment. Lewis Publ., Boca Raton, FL, 19-36.
  • [19] Heba, H. M. A., Al-Edresi, M. A. M., Al-Saad, H. T., Abdelmonesim, M. A., 2004. Background levels of heavy metals in dissolved, particulate phases of water and sediment of Al-Hodeidah, Red Sea coast of Yemen. J. King Abdulaziz Univ. — Mar. Sci. 15, 53-71, http://dx.doi.org/10.4197/mar.15-1.3.
  • [20] Jain, C. K., 2004. Metal fractionation study on bed sediments of River Yamuna, India. Water Res. 38, 569-578, http://dx.doi.org/10.1016/j.watres.2003.10.042.
  • [21] Kennedy, V. H., Sanchez, A. L., Oughton, D. H., Rowland, A. P., 1997. Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. Analyst 122, 89-100, http://dx.doi.org/10.1039/A704133K.
  • [22] Li, X., Shen, Z., Wai, O. W. H., Li, Y., 2000. Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary. Chem. Spec. Bioavailab. 12 (1), 17-25, http://dx.doi.org/10.3184/095422900782775607.
  • [23] Mansour, A. M., Askalany, M. S., Madkour, H. A., Assran, B. B., 2013. Assessment and comparison of heavy-metal concentrations in marine sediments in view of tourism activities in Hurghada area, northern Red Sea, Egypt. Egypt. J. Aquat. Res. 39, 91-103, http://dx.doi.org/10.1016/j.ejar.2013.07.004.
  • [24] Masoud, M. S., Said, T. O., El-Zokm, G., Shreadah, M. A., 2010. Speciation of Fe, Mn and Zn along the Egyptian Red Sea Coasts. Chem. Spec. Bioavailab. 22 (4), 257-269, http://dx.doi.org/10.3184/095422910X12894975123773.
  • [25] Molina, B. F., 1974. A rapid and accurate method for the analysis of calcium carbonate in small samples. J. Sediment. Petrol. 44 (2), 589-590, http://dx.doi.org/10.1306/74D72A9F-2B21-11D7-8648000102C1865D.
  • [26] Mora, S. D., Sheikholeslami, M. R., 2002. ASTP: Contaminant Screening Program. Final Report: Interpretation of Caspian Sea sediment data. Caspian Environ. Program (CEP) 27, 227-251, http://dx.doi.org/10.1007/978-94-007-0967-6_9.
  • [27] Moufaddal, W. M., 2002. Assessment of anthropogenic and natural changes along the Red Sea coastal zone between Ras Gemsha and Safaga, Egypt, using multidata satellite data. PhD Thesis. Saint Petersburg State Univ.
  • [28] Nemati, K., Abu Bakar, N. K., Sonhanzadeh, E., Abas, M. R., 2009. A modification of the BCR sequential extraction procedure to investigate the potential mobility of copper and zinc in shrimp aquaculture sludge. Microchem. J. 92, 165-169, http://dx.doi.org/10.1016/j.microc.2009.03.002.
  • [29] Okbah, M. A., Shata, M. A., Shridah, M. A., 2005. Geochemical forms of trace metals in mangrove sediments - Red Sea (Egypt). Chem. Ecol. 21 (1), 23-36, http://dx.doi.org/10.1080/02757540512331323953.
  • [30] Oregioni, B., Aston, S. R., 1984. The Determination of Selected Trace Metals in Marine Sediments by Flame Atomic Absorption Spectrophotometry. UNEP reference methods for marine pollution studies No 38, Internal Report. IAEA Monaco Laboratory, Monaco City.
  • [31] Oyeyiola, A. O., Olayinka, K. O., Alo, B. I., 2011. Comparison of three sequential extraction protocols for the fractionation of potentially toxic metals in coastal sediments. Environ. Monit. Assess. 172 (1-4), 319-327, http://dx.doi.org/10.1007/s10661-010-1336-4.
  • [32] Rattan, R. K., Datta, S. P., Chhonkar, P. K., Saribatu, K., Singh, A. K., 2005. Long-term impact of irrigation with sewage effluent on heavy metal content in soils, crops and ground water - a case study. Agric. Ecosyst. Environ. 109 (3-4), 310-322, http://dx.doi.org/10.1016/j.agee.2005.02.025.
  • [33] Rodríguez-Barroso, R. M., Benhamou, Y., El Moumni, B., El Hatimi, I., García-Morales, J. L., 2009. Evaluation of metal contamination in sediments from north of Morocco: geochemical and statistical approaches. Environ. Monit. Assess. 159 (1-4), 169-181, http://dx.doi.org/10.1007/s10661-008-0620-z.
  • [34] Rowell, D. L., 1994. Soil Science: Methods and Applications. Longman Sci. Tech., Harlow, Essex, 350 pp., http://dx.doi.org/10.1002/jsfa.2740660423.
  • [35] Sadhana Pradhanang, 2014. Distribution and fractionation of heavy metals in sediments of Karra River, Hetauda, Nepal. Technology 19 (2), 123-128, http://dx.doi.org/10.3126/jist.v19i2.13865.
  • [36] Salem, D. M. S. A., Khaled, A., El Nemr, A., El-Sikaily, A., 2014. Comprehensive risk assessment of heavy metals in surface sediments along the Egyptian Red Sea coast. Egypt. J. Aquat. Res. 40, 349-362, http://dx.doi.org/10.1016/j.ejar.2014.11.004.
  • [37] Singh, K. P., Mohan, D., Singh, V. K., Malik, A., 2005. Studies on distribution and fractionation of heavy metals in Gomti river sediments - a tributary of the Ganges. India. J. Hydrol. 312, 14-27, http://dx.doi.org/10.1016/j.jhydrol.2005.01.021.
  • [38] Tessier, A., Campbell, P. G. C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844-851, http://dx.doi.org/10.1021/ac50043a017.
  • [39] Topcuoglu, S., Kirbasoglu, C., Gungor, N., 2002. Heavy metals in organisms and sediments from Turkish Coast of the Black Sea. Environ. Int. 27, 521-526, http://dx.doi.org/10.1016/S0160-4120(01)00099-X.
  • [40] Youssef, M., El-Sorogy, A. S., Al-Kahtany, K. H., Al-Otaibi, N., 2015. Environmental assessment of coastal surface sediments Tarut Island, Arabian Gulf (Saudi Arabia). Mar. Pollut. Bull. 96, 424-433, http://dx.doi.org/10.1016/j.marpolbul.2015.05.010.
  • [41] Yuan, C. G., Shi, J. B., He, B., Liu, J. F., Liang, L. N., Jiang, G. B., 2004. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ. Int. 30, 769-783, http://dx.doi.org/10.1016/j.envint.2004.01.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-158b0e40-b5c0-4380-925b-ff2e065cd6a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.