Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Modelowanie procesu separacji elektrostatycznej w nowatorskiej instalacji ze stołem obrotowym do procesu recyklingu odpadów z tworzyw sztucznych
Języki publikacji
Abstrakty
This paper investigates particle electrostatic separation inside a new conical rotary installation using the discrete element method to understand particle behavior related to multiple variables such as the applied high-voltage, particle charge, and mass. The model offers the ability to monitor and control all significant parameters at particle level. The results have been analyzed using the response surface methodology to further understand the relationships between variables. These findings could serve as a blueprint for the manufacturing of an efficient industrial device.
Artykuł ten bada separację elektrostatyczną cząstek wewnątrz nowej stożkowej instalacji obrotowej przy użyciu metody elementów dyskretnych, aby zrozumieć zachowanie cząstek związane z wieloma zmiennymi, takimi jak przyłożone wysokie napięcie, ładunek cząstek i masa. Model oferuje możliwość monitorowania i kontrolowania wszystkich istotnych parametrów na poziomie cząstek. Wyniki zostały przeanalizowane przy użyciu metodologii powierzchni odpowiedzi, aby lepiej zrozumieć zależności między zmiennymi. Odkrycia te mogą posłużyć jako plan produkcji wydajnego urządzenia przemysłowego.
Wydawca
Czasopismo
Rocznik
Tom
Strony
15--20
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- IRECOM Laboratory, Faculty of Electrical Engineering, University of Djillali Liabes, Sidi Bel Abbes, Algeria
autor
- IRECOM Laboratory, Faculty of Electrical Engineering, University of Djillali Liabes, Sidi Bel Abbes, Algeria
autor
- IRECOM Laboratory, Faculty of Electrical Engineering, University of Djillali Liabes, Sidi Bel Abbes, Algeria
Bibliografia
- [1] A. Catinean, L. Dascalescu, M. Lungu, L. M. Dumitran, and A. Samuila, “Improving the recovery of copper from electric cable waste derived from automotive industry by corona-electrostatic separation,” Particulate Science and Technology, vol. 39, no. 4, pp. 449–456, May 2021, doi: 10.1080/02726351.2020.1756545.
- [2] P. R. Dias et al., “High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment,” Renewable and Sustainable Energy Reviews, vol. 169, p. 112900, Nov. 2022, doi: 10.1016/j.rser.2022.112900.
- [3] E. O. Opare, E. Struhs, and A. Mirkouei, “A comparative state-of-technology review and future directions for rare earth element separation,” Renewable and Sustainable Energy Reviews, vol. 143, p. 110917, Jun. 2021, doi: 10.1016/j.rser.2021.110917.
- [4] E. G. Shershneva, “Plastic Waste: Global Impact and Ways to Reduce Environmental Harm,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 1079, no. 6, p. 062047, Mar. 2021, doi: 10.1088/1757-899X/1079/6/062047.
- [5] M. A Kassem, M. A. Khoiry, and N. Hamzah, “Theoretical review on critical risk factors in oil and gas construction projects in Yemen,” ECAM, vol. 28, no. 4, pp. 934–968, Apr. 2021, doi: 10.1108/ECAM-03-2019-0123.
- [6] J. D. Colgan, “Oil, Domestic Politics, and International Conflict,” Energy Research & Social Science, vol. 1, pp. 198– 205, Mar. 2014, doi: 10.1016/j.erss.2014.03.005.
- [7] N. Sakib, N. U. Ibne Hossain, F. Nur, S. Talluri, R. Jaradat, and J. M. Lawrence, “An assessment of probabilistic disaster in the oil and gas supply chain leveraging Bayesian belief network,” International Journal of Production Economics, vol. 235, p. 108107, May 2021, doi: 10.1016/j.ijpe.2021.108107.
- [8] M. Gliniak, “The possibilities of automation of the manual line for dismantling waste electrical and electronic equipment,” Przeglad Elektrotechniczny, vol. 1, no. 6, pp. 138–141, Jun. 2018, doi: 10.15199/48.2018.06.26.
- [9] A. V. M. Silveira, M. Cella, E. H. Tanabe, and D. A. Bertuol, “Application of tribo-electrostatic separation in the recycling of plastic wastes,” Process Safety and Environmental Protection, vol. 114, pp. 219–228, Feb. 2018, doi: 10.1016/j.psep.2017.12.019.
- [10] J. Li and Z. Xu, “Compound tribo-electrostatic separation for recycling mixed plastic waste,” Journal of Hazardous Materials, vol. 367, pp. 43–49, Apr. 2019, doi: 10.1016/j.jhazmat.2018.12.017.
- [11] L. Dascalescu, T. Zeghloul, and A. Iuga, “Electrostatic Separation of Metals and Plastics From Waste Electrical and Electronic Equipment,” in WEEE Recycling, Elsevier, 2016, pp. 75–106. doi: 10.1016/B978-0-12-803363-0.00004-3.
- [12] K. Dong, Q. Zhang, Z. Huang, Z. Liao, J. Wang, and Y. Yang, “Experimental Investigation of Electrostatic Reduction in a Gas–Solid Fluidized Bed by an in Situ Corona Charge Eliminator,” Ind. Eng. Chem. Res., vol. 53, no. 37, pp. 14217– 14224, Sep. 2014, doi: 10.1021/ie501584v.
- [13] G. S. P. Castle, “A Century of Development in Applied Electrostatics [History],” IEEE Ind. Appl. Mag., vol. 16, no. 4, pp. 8–13, Jul. 2010, doi: 10.1109/MIAS.2010.937301.
- [14] W. Wei and Z. Gu, “Electrification of particulate entrained fluid flows—Mechanisms, applications, and numerical methodology,” Physics Reports, vol. 600, pp. 1–53, Oct. 2015, doi: 10.1016/j.physrep.2015.10.001.
- [15] F. Mach, P. Kus, P. Karban, and I. Dolezel, “Higher-Order Modeling of Electrostatic Separator of Plastic Particles,” Przeglad Elektrotechniczny, vol. 88, pp. 74–76, Jan. 2012.
- [16] J. Li, Q. Zhou, and Z. Xu, “Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards,” Waste Manag Res, vol. 32, no. 12, pp. 1227–1234, Dec. 2014, doi: 10.1177/0734242X14554647.
- [17] K. Enders, A. S. Tagg, and M. Labrenz, “Evaluation of Electrostatic Separation of Microplastics From Mineral-Rich Environmental Samples,” Front. Environ. Sci., vol. 8, p. 112, Jul. 2020, doi: 10.3389/fenvs.2020.00112.
- [18] J. Li and L. Dascalescu, “Newly-Patented Technical Solutions for improving the Tribo-Electrostatic Separation of Mixed Granular Solids,” ENG, vol. 6, no. 2, pp. 104–115, Jun. 2012, doi: 10.2174/187221212801227158.
- [19] W. Jiang, L. Jia, and X. Zhen-ming, “A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board,” Journal of Hazardous Materials, vol. 161, no. 1, pp. 257–262, Jan. 2009, doi: 10.1016/j.jhazmat.2008.03.088.
- [20] A. Phillip Grima and P. Wilhelm Wypych, “Discrete element simulations of granular pile formation: Method for calibrating discrete element models,” Engineering Computations, vol. 28, no. 3, pp. 314–339, Apr. 2011, doi: 10.1108/02644401111118169.
- [21] D. Sun, L. Zhao, G. Liang, and H. Zhou, “Prediction of Bolted Joint Dynamics Based on the Thin-Layer Element of Nonlinear Material,” ACSM, vol. 43, no. 5, pp. 311–315, Nov. 2019, doi: 10.18280/acsm.430506.
- [22] Yeom, Ha, Kim, Jeong, Hwang, and Choi, “Application of the Discrete Element Method for Manufacturing Process Simulation in the Pharmaceutical Industry,” Pharmaceutics, vol. 11, no. 8, p. 414, Aug. 2019, doi: 10.3390/pharmaceutics11080414.
- [23] D. J. Choszcz, P. S. Reszczyński, E. Kolankowska, S. Konopka, and A. Lipiński, “The Effect of Selected Factors on Separation Efficiency in a Pneumatic Conical Separator,” Sustainability, vol. 12, no. 7, p. 3051, Apr. 2020, doi: 10.3390/su12073051.
- [24] M. Berggren, R. Zubrin, P. Jonscher, and J. Kilgore, “Lunar Soil Particle Separator,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida: American Institute of Aeronautics and Astronautics, Jan. 2011. doi: 10.2514/6.2011-436.
- [25] C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, “Models, algorithms and validation for opensource DEM and CFD-DEM,” PCFD, vol. 12, no. 2/3, p. 140, 2012, doi: 10.1504/PCFD.2012.047457.
- [26] R. Berger, C. Kloss, A. Kohlmeyer, and S. Pirker, “Hybrid parallelization of the LIGGGHTS open-source DEM code,” Powder Technology, vol. 278, pp. 234–247, Jul. 2015, doi: 10.1016/j.powtec.2015.03.019.
- [27] H. Wei, Y. Zhao, J. Zhang, H. Saxén, and Y. Yu, “LIGGGHTS and EDEM application on charging system of ironmaking blast furnace,” Advanced Powder Technology, vol. 28, no. 10, pp. 2482–2487, Oct. 2017, doi: 10.1016/j.apt.2017.05.012.
- [28] C. Kloss and C. Goniva, “LIGGGHTS - Open Source Discrete Element Simulations of Granular Materials Based on Lammps,” in Supplemental Proceedings, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011, pp. 781–788. doi: 10.1002/9781118062142.ch94.
- [29] R. K. Soni and R. K. Dwari, “DEM numerical studies on the design and efficiency of the continuous operating triboelectric separator,” Advanced Powder Technology, vol. 31, no. 4, pp. 1624–1632, Apr. 2020, doi: 10.1016/j.apt.2020.02.005.
- [30] A. Hager, C. Kloss, and C. Goniva, “Combining Open Source and Easy Access in the field of DEM and coupled CFD-DEM: LIGGGHTS®, CFDEM®coupling and CFDEM®workbench,” in Computer Aided Chemical Engineering, Elsevier, 2018, pp. 1699–1704. doi: 10.1016/B978-0-444-64235-6.50296-5.
- [31] T. Leps and C. Hartzell, “High fidelity, discrete element method simulation of magnetorheological fluids using accurate particle size distributions in LIGGGHTS extended with mutual dipole method,” Mater. Res. Express, vol. 8, no. 8, p. 085701, Aug. 2021, doi: 10.1088/2053-1591/ac113c.
- [32] C. Ramírez-Aragón, J. Ordieres-Meré, F. Alba-Elías, and A. González-Marcos, “Comparison of Cohesive Models in EDEM and LIGGGHTS for Simulating Powder Compaction,” Materials, vol. 11, no. 11, p. 2341, Nov. 2018, doi: 10.3390/ma11112341.
- [33] A. H. Madadi Najafabadi, A. Masoumi, and S. M. Vaez Allaei, “Analysis of abrasive damage of iron ore pellets,” Powder Technology, vol. 331, pp. 20–27, May 2018, doi: 10.1016/j.powtec.2018.02.030.
- [34] M. Jahani, A. Farzanegan, and M. Noaparast, “Investigation of screening performance of banana screens using LIGGGHTS DEM solver,” Powder Technology, vol. 283, pp. 32–47, Oct. 2015, doi: 10.1016/j.powtec.2015.05.016.
- [35] S. M. Derakhshani, D. L. Schott, and G. Lodewijks, “Micro– macro properties of quartz sand: Experimental investigation and DEM simulation,” Powder Technology, vol. 269, pp. 127– 138, Jan. 2015, doi: 10.1016/j.powtec.2014.08.072.
- [36] C. Ramírez-Aragón, J. Ordieres-Meré, F. Alba-Elías, and A. González-Marcos, “Numerical Modeling for Simulation of Compaction of Refractory Materials for Secondary Steelmaking,” Materials, vol. 13, no. 1, p. 224, Jan. 2020, doi: 10.3390/ma13010224.
- [37] P. Dutta, S. Mandal, and A. Kumar, “Comparative study: FPA based response surface methodology & ANOVA for the parameter optimization in process control,” AMA_C, vol. 73, no. 1, pp. 23–27, Mar. 2018, doi: 10.18280/ama_c.730104.
- [38] A. Bensaha, F. Benkouider, Sma. Bekkouche, A. Abdellaoui, T. Chergui, and A. Benseddik, “An Experimental Study of an Evacuated Tube Solar Collector Using the Response Surface Methodology (RSM),” MMC_B, vol. 88, no. 2–4, pp. 106–111, Dec. 2019, doi: 10.18280/mmc_b.882-414.
- [39] N. V. S. R. Yellapragada et al., “Application of Taguchi – PCA/GRA Method to Optimize the Wear Behaviour of Polyester/Carbon Fibre Composites,” RCMA, vol. 33, no. 2, pp. 65–73, Apr. 2023, doi: 10.18280/rcma.330201.
- [40] B. Rudiyanto, M. Andrianto, B. Piluharto, and M. Hijriawan, “Design-Based Response Surface Methodology in Optimizing the Dry Washing Purification Process of Biodiesel from Waste Cooking Oil,” IJHT, vol. 40, no. 2, pp. 561–568, Apr. 2022, doi: 10.18280/ijht.400224.
- [41] A. Becze, V. L. Babalau-Fuss, C. Varaticeanu, and C. Roman, “Optimization of High-Pressure Extraction Process of Antioxidant Compounds from Feteasca regala Leaves Using Response Surface Methodology,” Molecules, vol. 25, no. 18, p. 4209, Sep. 2020, doi: 10.3390/molecules25184209.
- [42] A. Daraee, S. M. Ghoreishi, and A. Hedayati, “Supercritical CO2 extraction of chlorogenic acid from sunflower (Helianthus annuus) seed kernels: modeling and optimization by response surface methodology,” The Journal of Supercritical Fluids, vol. 144, pp. 19–27, Feb. 2019, doi: 10.1016/j.supflu.2018.10.001.
- [43] O. D. Mante, F. A. Agblevor, and R. McClung, “A study on catalytic pyrolysis of biomass with Y-zeolite based FCC catalyst using response surface methodology,” Fuel, vol. 108, pp. 451–464, Jun. 2013, doi: 10.1016/j.fuel.2012.12.027.
- [44] B. Rudiyanto, M. Andrianto, B. Piluharto, and M. Hijriawan, “Design-Based Response Surface Methodology in Optimizing the Dry Washing Purification Process of Biodiesel from Waste Cooking Oil,” IJHT, vol. 40, no. 2, pp. 561–568, Apr. 2022, doi: 10.18280/ijht.400224.
- [45] I. Taymaz, F. Akgun, and M. Benli, “Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC,” Energy, vol. 36, no. 2, pp. 1155–1160, Feb. 2011, doi: 10.1016/j.energy.2010.11.034.
- [46] D. Pinheiro, K. R. Sunaja Devi, A. Jose, N. Rajiv Bharadwaj, and K. J. Thomas, “Effect of surface charge and other critical parameters on the adsorption of dyes on SLS coated ZnO nanoparticles and optimization using response surface methodology,” Journal of Environmental Chemical Engineering, vol. 8, no. 4, p. 103987, Aug. 2020, doi: 10.1016/j.jece.2020.103987.
- [47] S. Simsek and S. Uslu, “Investigation of the effects of biodiesel/2-ethylhexyl nitrate (EHN) fuel blends on diesel engine performance and emissions by response surface methodology (RSM),” Fuel, vol. 275, p. 118005, Sep. 2020, doi: 10.1016/j.fuel.2020.118005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15864a82-a3a0-4bd6-a1ba-32513f4bca6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.