PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods for designing and simulating optical systems for luminaires

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents modern methods for designing optical systems for luminaires in the context of long years of light sources development. It shows that the development of technology for producing increasingly precise optical systems has led to an evolution in the construction of luminaires with increased efficacy and utilizing more efficiently the features of a specific family of light sources. Methods for designing and modelling optical systems with the use of mathematical curves as well as advanced the free-forming method are described. The paper also shows methods for modelling light sources features, especially luminance ones, designed to make precise simulation calculations required in any luminaire design process. Knowledge of luminance distributions of light sources and precise luminance distributions of optical systems for luminaires raises the design process to a very high level, enabling positive modern light source features, such as high luminance and their small dimensions, to be used consciously while minimizing negative ones, such as discomfort glare, caused by luminaires. The paper presents the results of simulation calculations and laboratory measurements for a selected case of luminaire equipped with a discharge lamp of maximum luminance exceeding 30 million cd/m2.
Rocznik
Strony
739--750
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] T. Porsch and F. Schmidt, “Assessment of Daylit Glare Parameters With Imaging Luminance Measuring Devices (Ilmd) and Image Processing”, Gmbh, Technoteam Bild. 1, 5–6 (2010).
  • [2] D.E. Spencer, L.L. Montgomery, and J.F. Fitzgerald, “Macrofocal Conics as Reflector Contours”, J. Opt. Soc. Am. 55, 5–11 (1965).
  • [3] S. Cho, “Explicit superconic curves”, J. Opt. Soc. Am. A 33, 1822–1830 (2016).
  • [4] C. Bösel and H. Gross, “Compact freeform illumination system design for pattern generation with extended light sources”, Applied Optics 58 (10), 2713–2724 (2019), DOI: 10.1364/AO.58.002713.
  • [5] X. Mao, S. Xu, X. Hu, and Y. Xie, “Design of a smooth freeform illumination system for a point light source based on polar-type optimal transport mapping”, Applied Optics 56 (22), 6324–6331 (2017), DOI: 10.1364/AO.56.006324.
  • [6] S. Zalewski, “Design of optical systems for LED road luminaires”, Applied Optics, 54 (2), 163–170, (2016), DOI: 10.1364/AO.54.000163.
  • [7] N. Tomás and J. Arasa, “Construction Method of Tailored Facets for Use in Freeform Reflectors Design”, Leukos 11 (3), 125–140 (2015), DOI: 10.1080/15502724.2015.1020950.
  • [8] K. Wandachowicz and G. Antonutto, “Optimization of rotationally symmetrical mirror reflector profile”, Electrical Review 86 (10), 252–256 (2010).
  • [9] D. Ma, Z. Feng, and R. Liang, “Tailoring freeform illumination optics in a double-pole coordinate system”, Applied Optics 54 (9), 2395–2399 (2015), DOI: 10.1364/AO.54.002395.
  • [10] D. Ma, Z. Feng, and R. Liang, “Freeform illumination lens design using composite ray mapping”, Applied Optics 54 (3), 498–503, (2015), DOI: 10.1364/AO.54.000498.
  • [11] X Li, P Ge, and H Wang, “An efficient design method for LED surface sources in three-dimensional rotational geometry using projected angle difference”, Light. Res. and Tech. 51, 457–464 (2019), DOI: 10.1177/1477153517754129.
  • [12] D. Luo, P. Liu, D. Ge, and H. Wang, “A combined lens design for an LED low-beam motorcycle headlight”, Light. Res. And Tech. 50, 456–466 (2018).
  • [13] K. Kubiak, “The superposition of light spots in calculations of reflectors for illumination”, Electrical Review 89 (8), 241–244 (2013).
  • [14] K. Kubiak, “Light source modeling for utilization in asymmetric reflector design for even surface illumination”, in Proceedings of VI. IEEE Lighting Conference of the Visegrad Countries, pp. 113–117, 2016.
  • [15] K. Kubiak, “Modelowanie reflektora iluminacyjnego realizującego założony rozkład luminancji obiektu”, (eng. Modeling of the floodlight luminaire for implementation the assumed luminance distribution of the object), doctoral thesis, 89(8), Oficyna Wydawnicza Politechniki Warszawskiej (2015) [in Polish].
  • [16] K. Kubiak, “Kształtowanie odbłyśnika na potrzeby asymetrycznego, LED-owego naświetlacza iluminacyjnego” (eng. Shaping the reflector for the needs of the asymmetrical LED floodlight), Electrical Review 94 (2), 128–133 (2018).
  • [17] D. Stanger, “Monte Carlo Procedures in Lighting Design”, Journal of the Illuminating Engineering Society, 13 (4), 368–371 (1984).
  • [18] J. Rami, G. Lorge, and P. Tarroux, “LEDs optical modelling and simulation for lighting application”, in 10th International Symposium on the Science and Technology of Light, pp. 545–547, (2004).
  • [19] P. Tabaka and P. Rozga, “Assessment of methods of marking LED sources with the power of equivalent light bulb”, Bull. Pol. Ac.: Tech. 65 (6), 883–890 (2017).
  • [20] K. Guzek and P. Napieralski, “Efficient rendering of caustics with streamed photon mapping”, Bull. Pol. Ac.: Tech. 65 (3), 261–368 (2017).
  • [21] L. Zhu, A. Ge, Z. Ge, R. Hao, J. Chen, and X. Tao, “A Fresnel freeform surface collimating lens for LED”, Light. Res. And Tech. 6, 952–960 (2018).
  • [22] S. Słomiński, “Luminance mapping to the light source model – possibilities to use a MML in the lighting technology field”, Electrical Review 87 (4), 87–90 (2011).
  • [23] LTI Optics, LLC, http://www.ltioptics.com/en/photopia-general-2017.html. Accessed 2017.
  • [24] K. Bredemeier and F. Schmidt, “Ray Data of LEDs and Arc Lamps”, Technoteam BV GmbH, Germany, W. Jordanov, ILEXA GbR, Germany, 2005.
  • [25] S. Słomiński, “Dynamic mapping of luminance in analytical model of source of the light”, Electrical Review 86, 247–250 (2010).
  • [26] IES TM-25-13, “Ray File Format for the Description of the Emission Property of Light Sources”, Illuminating Engineering Society, 2013.
  • [27] Opsira GmbH, “Ray data measurement”, https://www.opsira.de/en/products/lightlab/ray-data-measurement.html, Accessed 2019.
  • [28] S. Słomiński, “Advanced modelling and luminance analysis of LED optical systems”, Bull. Pol. Ac.: Tech. 67 (6), 1107–1116 (2019).
  • [29] ASJ. Bergen, “Practical method of comparing luminous intensity distributions”, Light. Res. And Tech. 44 (1), 27–36 (2012).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15828830-4af8-4f18-b2ba-00784c3fd6c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.