PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the production process of the forked forging used in the excavator drive system in order to improve the currently implemented technology by the use of numerical modeling

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study concerns a comprehensive analysis of a multistage hot-die forging on hammers, in order to produce a yoke-type forging, used as a component of excavator power transmission systems. The investigations were conducted with the aim to analyze and identify the sensitive areas in the process and then improve the currently implemented forging technology by using finite element (FE) simulation. QuantorForm (the developer of the QForm program) has developed a thermomechanical numerical model for the production of forked forging. The software Computer-Aided Three-Dimensional Interactive Application (CATIA) was used to develop and build Computer-Aided Design (CAD) models of forging tools. As a result of the numerical simulations, the plastic deformations and temperature distributions for the forgings and tools were obtained, and the force courses during the forging process were analyzed. The obtained results enabled a thorough analysis of the forging process, including identification of potential forging defects (laps) as well as those tool areas that are the most loaded and exposed to damage. On this basis, changes were implemented in the production process, which allowed for the improvement of the currently implemented technology and obtaining the corrected forgings.
Wydawca
Rocznik
Strony
227--239
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • Wroclaw University of Science and Technology, Wroclaw, Poland
  • Kuznia Jawor S.A., Jawor, Poland
autor
  • Wroclaw University of Science and Technology, Wroclaw, Poland
  • Wroclaw University of Science and Technology, Wroclaw, Poland
  • Wroclaw University of Science and Technology, Wroclaw, Poland
  • Schraner Polska, Łeczyca, Poland
Bibliografia
  • [1] Semiatin SL. Metalworking: Bulk Forming, ASM Handbook; 2009.
  • [2] Hawryluk M, Rychlik M., Krawczyk J., Gronostajski, Z. Nowak B., Jabłoński P. Analysis of the forging proces of fork type forging used in the excavator's drive system using the results of numerical simulation. Hutnik- Wiadomości Hutnicze. 2018;85(8):251–5.
  • [3] Vazquez V, Altan T. New concepts in die design – physical and computer modeling applications. J Mater Process Technol. 2000;98(2):212–23.
  • [4] Gronostajski Z, Hawryluk M. The main aspects of precision forging. Arch Civil Mech Eng. 2008;8(2):39–57.
  • [5] ISO GPS 10360-4:2000. Geometrical Product Specification – Acceptances and Reverification Tests for Coordinate Measuring Machine- Part 5: CMMs used in Scanning Measuring Modes; 2002.
  • [6] Mathia TG, Pawlus P. Recent trends in surface metrology. Wear. 2012;282:495–1.
  • [7] Hawryluk M, Ziemba J. Application of the 3D reverse scanning method in the analysis of tool wear and forging defects. Measurement. 2018;128:204–13.
  • [8] Taylan A, Gracious N, Gangshu S. Cold and hot forging fundamentals and application. ASM Int. ASM Metals Handb. 2005;14:337–8.
  • [9] Gronostajski Z, Kaszuba M, Polak S, Zwierzchowski M, Niechajowicz A, Hawryluk M. The failure mechanisms of hot forging dies. Mater Sci Eng. 2016;657:147–60.
  • [10] Lavtar L, Muhic T, Kugler G, Tercelj M. Analysis of the main types of damage on a pair of industrial dies for hot forging carsteering mechanisms. Eng Fail Anal. 2011;18(4):1143–52.
  • [11] Archard J. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24(8):981–8.
  • [12] Kim DH, Lee HC, Kim BM, Kim KH. Estimation of die service life against plastic deformation and wear during hot forging processes. J Mater Process Technol. 2005;166(3):372–80.
  • [13] Choi C, Groseclose A, AltanT. Estimation of plastic deformation and abrasive wear in warm forging dies. J Mater Process Technol. 2012;212(8):1742–52.
  • [14] Starlinga CM, Brancob JR. Thermal fatigue of hot work tool steel with hard coatings. Thin Solid Films. 1997;308(309):436–42.
  • [15] Berti GA, Monti M. Thermo-mechanical fatigue life assessment of hot forging die steel. Fatigue Fract Eng Mater Struct. 2005;28(11):1025–34.
  • [16] Furrer DU, Semiatin SL. ASM Handbook, Volume 22B - Metals Process Simulation; 2010.
  • [17] Bašić H, Duharkić M, Burak S. Numerical simulation of hot forging process in production of axisymmetric automobile parts. Period Eng Nat Sci. 2019;7(4):1572–81.
  • [18] Su G, Zhang A. Three-dimensional finite element numerical simulation and analysis of solid-state processing of metal material. Complexity. 2020; https://doi.org/10.1155/2020/8819745
  • [19] Kocańda A. Określenie trwałości narzędzia w obróbce plastycznej metali/Estimation of tool life in metal forming.Informatyka w Technologii Metali. Wydawnictwo Politechniki Śląskiej; 2003. pp. 213–256.
  • [20] Hawryluk M, Jakubik J. Analysis of forging defects for selected industrial die forging processes. Eng Fail Anal. 2016;58:396–409.
  • [21] Gronostajski Z, Hawryluk M, Kaszuba M, Zwierzchowski M. Analysis of forging process of constant velocity joint body. Steel Res Int. 2008;1:547–54.
  • [22] Krishna RH, Jena DP. Analytical and numerical modelling of open-die forging process for elliptical crosssection of billet. Measurement. 2019;134:855–65.
  • [23] Xu Y, Zhang Y, Zhuang X, Cao Z, Lu Y, Zhao Z. Numerical modeling and anvil design of high-speed forging process for railway axles. Int J Mater Form. 2020; https://doi.org/10.1007/s12289-020-01590-9
  • [24] Janjic M, Vukcevic M, Jurkovic Z, Sibalic N, Savicevic S. Physical modelling and numerical finite element method (FEM) simulation of forging in open die of alloy AIMgSi0,5. Metalurgija. 2016;55(2):181–4.
  • [25] Sheljaskow S. Tool lubricating systems in warm forging. J Mater Process Technol. 2001;113(1–3):16–21.
  • [26] Hawryluk M, Ziemba J. Lubrication in hot die forging processes. Proc Inst Mech Eng Part J. 2019;233(5):663–75.
  • [27] Ellinghauden T. The revolution of simulation software development. Forg Magazine. 2013;6:16–8.
  • [28] Kopernik M, Milenin A. Numerical modeling of substrate effect on determination of elastic and plastic properties of TiN nanocoating in nanoindentation tests. Arch Civil Mech Eng. 2015;14(2):266–77.
  • [29] Lee SR, Lee YK, Park CH, Yang DY. A new method of preform design in hot forging by using electric field theory. Int J Mech Sci. 2002;44(4):773–92.
  • [30] Sedighi M, Tokmechi S. A new approach to preform design in forging process of complex parts. J Mater Process Technol. 2008;97(1–3):314–24.
  • [31] Altan T. Cold and hot forging fundamentals and applications. Ohio, USA: ASM International; 2005.
  • [32] Lange K, Cser L. Tool life and tool quality in bulk metal forming. Proc Inst Mech Eng Part B. 1993;207:223–39.
  • [33] Lee SK, Ko DC, Kim BM. Optimal die profile design for uniform microstructure in hot extrusion product. Int J Mach Tools Manuf. 2000;40(10):1457–78.
  • [34] Forge NxT 2011, Documentation, Subsidiary Transvalor, E-Golf Park, 950 Av. Roumanille, 06410 Biot, France, https://www.transvalor.com/en/forge.
  • [35] Simufact forming reference, Simufact engineering. GmbH, Tempowerkring 19 21079 Hamburg, Germany, https://www.simufact.com/.
  • [36] Gform. Hot forging, Application. 2021. https://www.qform3d.com/processes/hot. Accessed 11 Apr 2021.
  • [37] Venet G, Baudouin C, Pondaven C, Bigot R, Balan T. Parameter identification of 42CrMo4 steel hot forging plastic flowbehaviour using industrial upsetting presses and finiteelement simulations. Int J Mater Form. 2021; https://doi.org/10.1007/s12289-020-01609-1.
  • [38] Nytra M, Kubik P, Petruska J, Sebek F. A fully coupled thermomechanical damage analysisof hot closed die forging using finite element modelling. J Mater Eng Perform. 2020;29(12):8236–46.
  • [39] Xu Y, Zhang Y, Zhuang X, Cao Z, Lu Y, Zhao Z. Numerical modeling and anvil design of high-speed forging processfor railway axles. Int J Mater Form. 2020; https://doi.org/10.1007/s12289-020-01590-9
  • [40] Bouissaa Y, Bohloolia N, Shahriari D, Champliaud H, Morin JB, Jahazi M. FEM modeling and experimental validation of quench-induced distortions of large size steel forgings. J Manuf Process. 2020;58:592–605.
  • [41] Hawryluk M, Widomski P, Kaszuba M, Krawczyk J. Development of new preheating methods for hot forging tools based on industrial case studies and numerical modeling. Metal Mater Trans A. 2020:51(9):4753–64.
  • [42] Marek H, Jacek Z, Lukasz D, Pawel K, Marcin K. Wear analysis of forging tools used in the hot forging processes using 3D reverse scanning techniques and cooling-lubricating system. Int J Adv Manuf Technol. 2018;97(5–8):2009–18.
  • [43] Dworzak Ł, Hawryluk M, Janik M. The impact of the lubricant dose on the reduction of wear dies used in the forging process of the valve forging. Materials. 2021;14(1):212.
  • [44] Hawryluk M, Ziemba J. Lubrication in hot die forging processes. Proc Inst Mech Eng Part J. 2019;233(5):663–75.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-157a1857-c9cc-4aea-a0aa-be5892cec877
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.