PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Road vehicle sequencing problem in a railroad intermodal terminal – simulation research

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the issue of container handling processes at a railroad intermodal terminal. The main purpose of this paper is the assessment of the handling equipment utilization and the associated energy consumption. The authors analyze how the road vehicle availability at the moment specified in the containers loading schedule influences the total handling equipment operation time as well as the necessary number of handling equipment. It is assumed that vehicles planned for loading of import containers may be late for loading, which causes some interruptions in the loading schedule. Such interruptions are identified with the necessity to handle the next container for which the road vehicle is already waiting, which influences the handling equipment utilization and, finally, energy consumption. The general mathematical model of the problem developed in the FlexSim simulation software was presented. Based on the simulation research, it pointed out that proper road vehicles loading sequencing can significantly reduce handling equipment operation time, and thus energy consumption, costs, and CO2 emissions. The literature analysis presented in the paper indicates that most of the research in the field of intermodal transport is focused on operations optimization in container ports. There are differences between two types of intermodal terminals in operation procedures and rules. That is why the authors decided to undertake the problem of road vehicle sequencing including their random availability and its influence on handling device operation time, which has not been considered in the literature so far.
Rocznik
Strony
1135--1148
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] P. Arnold, D. Peeters, and I. Thomas, “Modelling a rail/road intermodal transportation system”, Transp. Res. E Logist. Transp. Rev. 40(3), 255‒270 (2004).
  • [2] R. Jachimowski, “Review of transport decision problems in the marine intermodal terminal”, Arch. Transp. 44(4), 35‒45 (2017).
  • [3] R. Jachimowski, E. Szczepański, M. Kłodawski, K. Markowska, and J. Dąbrowski, “Selection of a container storage strategy at the rail-road intermodal terminal as a function of minimization of the energy expenditure of transshipment devices and CO2 Emissions”, Ann. Set The Env. Prot. 20(2), 965‒988 (2018).
  • [4] H.J. Carlo, I.F. Vis, and K.J. Roodbergen, “Storage yard operations in container terminals: Literature overview, trends, and research directions”, Eur. J. Oper. Res. 235(2), 412‒430 (2014).
  • [5] T. Ambra, A. Caris, and C. Macharis, “Towards freight transport system unification: reviewing and combining the advancements in the physical internet and synchromodal transport research”, Int. J. Prod. Res. 57(6), 1606‒1623 (2019).
  • [6] C. Dong, R. Boute, A. McKinnon, and M. Verelst, “Investigating synchromodality from a supply chain perspective”, Transp. Res. D. Tans. Environ. 61, 42‒57 (2018).
  • [7] R. Giusti, C. Iorfida, Y. Li, D. Manerba, S. Musso, G. Perboli, R. Tadei, and S. Yuan, “Sustainable and de-stressed international supply-chains through the SYNCHRO-NET approach”, Sustainability 11(4), 1083 (2019).
  • [8] G. Kovacs, “Novel supply chain concepts and optimization of virtual enterprises to reduce cost, increase productivity and boost competitiveness”, Bull. Pol. Ac.: Tech. 66(6), 973‒980 (2018).
  • [9] A. De, S. Pratap, A. Kumar, and M.K. Tiwari, “A hybrid dynamic berth allocation planning problem with fuel costs considerations for container terminal port using chemical reaction optimization approach”, Ann. Oper. Res. 247, 1‒29 (2018).
  • [10] C, Bierwirth and F. Meisel, “A follow-up survey of berth allocation and quay crane scheduling problems in container terminals”, Eur. J. Oper. Res. 244(3), 675‒689 (2015).
  • [11] L. Kallel, E. Benaissa, H. Kamoun, M. Benaissa, “Berth allocation problem: formulation and a Tunisian case study”, Arch. Transp. 51(3), 85‒100 (2019).
  • [12] O.A. Kasm and A. Diabat, “The quay crane scheduling problem with non-crossing and safety clearance constraints: An exact solution approach”, Comput. Oper. Res. 107, 189‒199, (2019).
  • [13] Y. Xie and D.P. Song, “Optimal planning for container prestaging, discharging, and loading processes at seaport rail terminals with uncertainty”, Transp. Res. E Logist. Transp. Rev. 119, 88‒109 (2018).
  • [14] D. Ambrosino, and A. Sciomachen, “A shipping line stowage-planning procedure in the presence of hazardous containers”, Marit. Econ. Logist. 1‒22 (2018).
  • [15] H. Hu, X. Chen, T. Wang, and Y. Zhang, “A three-stage decomposition method for the joint vehicle dispatching and storage allocation problem in automated container terminals”, Comput. Ind. Eng. 129, 90‒101 (2019).
  • [16] V. Galle, C. Barnhart, and P. Jaillet, “ Yard Crane Scheduling for container storage, retrieval, and relocation”, Eur. J. Oper. Res. 271(1), 288‒316 (2018).
  • [17] F. Zheng, X. Man, F. Chu, M. Liu, and C. Chu, “A two-stage stochastic programming for single yard crane scheduling with uncertain release times of retrieval tasks”, Int. J. Prod. Res. 57(13), 4132‒4147 (2019).
  • [18] N. Boysen, M. Fliedner, F. Jaehn, and E. Pesch, “A survey on container processing in railway yards”, Transp. Sci. 47(3), 312‒329 (2013).
  • [19] H.J. Carlo, I.F. Vis, and K.J. Roodbergen, “Seaside operations in container terminals: literature overview, trends, and research directions”, Flex. Serv. Manuf. J. 27(2‒3), 224‒262 (2015).
  • [20] C. Bierwirth and F. Meisel, “A survey of berth allocation and quay crane scheduling problems in container terminals”, Eur. J. Oper. Res. 202(3), 615‒627 (2010).
  • [21] N. Boysen, D. Briskorn, and F. Meisel, “A generalized classification scheme for crane scheduling with interference”, Eur. J. Oper. Res. 258(1), 343‒357 (2017).
  • [22] K.H. Kim and H. Lee, “Container terminal operation: current trends and future challenges”, in Handbook of Ocean Container Transport Logistics, pp. 43‒73, Springer, Cham, 2015.
  • [23] D. Steenken, S. Voß, R. Stahlbock, “Container terminal operation and operations research-a classification and literature review”, OR spectrum 26(1), 3‒49 (2004).
  • [24] R. Stahlbock and S. Voß, “Operations research at container terminals: a literature update”, OR spectrum 30(1), 1‒52 (2008).
  • [25] P. Corry and E. Kozan, “A decision support system for intermodal train planning”, in Proceedings of the second international intelligent logistics systems conference, pp. 13‒1, 2006.
  • [26] F. Bruns, M. Goerigk, S. Knust, and A. Schöbel, “Robust load planning of trains in intermodal transportation”, OR spectrum 36(3), 631‒668 (2014).
  • [27] H. Heggen, K. Braekers, and A. Caris, “A multi-objective approach for intermodal train load planning”, OR spectrum 40(2), 341‒366 (2018).
  • [28] Y.C. Lai, and C.P. Barkan, “Options for improving the energy efficiency of intermodal freight trains”, Transp. Res. Rec. 1916(1), 47‒55 (2005).
  • [29] E. Kozan, “Increasing the operational efficiency of container terminals in Australia”, J. Oper. Res. Soc. 48(2), 151‒161 (1997).
  • [30] N. Boysen and M. Fliedner, “Determining crane areas in intermodal transshipment yards: The yard partition problem”, Eur. J. Oper. Res. 204(2), 336‒342 (2010).
  • [31] C.F. Daganzo, “The crane scheduling problem”, Trans. Res B. Meth 23(3), 159‒175 (1989).
  • [32] K.H. Kim, and Y.M. Park, “A crane scheduling method for port container terminals”, Eur. J. Oper. Res. 156(3), 752‒768 (2004).
  • [33] M. Sammarra, J.F. Cordeau, G. Laporte, and M.F. Monaco, “A tabu search heuristic for the quay crane scheduling problem”, J. Sched. 10(4‒5), 327‒336 (2007).
  • [34] D.H. Lee, H. Qiu Wang, and L. Miao, “Quay crane scheduling with handling priority in port container terminals”, Eng. Optim. 40(2), 179‒189 (2008).
  • [35] C. Bierwirth and F. Meisel, “A fast heuristic for quay crane scheduling with interference constraints”, J. Sched. 12(4), 345‒360 (2009).
  • [36] J.H. Chen and M. Bierlaire, “The study of the unidirectional quay crane scheduling problem: complexity and risk-aversion”, Eur. J. Oper. Res. 260(2), 613‒624 (2017).
  • [37] N. Kaveshgar and N. Huynh, “Integrated quay crane and yard truck scheduling for unloading inbound containers”, Int. J. Prod. Econ. International 159, 168‒177 (2015).
  • [38] S. Fedtke and N. Boysen, “Gantry crane and shuttle car scheduling in modern rail–rail transshipment yards”, OR spectrum 39(2), 473‒503 (2017).
  • [39] K. Alicke, “Modeling and optimization of the intermodal terminal Mega Hub”, in Container Terminals and Automated Transport Systems, pp. 307‒323, Springer, Berlin, Heidelberg, 2005.
  • [40] F.M. Martínez, I.G. Gutiérrez, A.O. Oliveira, and L.M.A. Bedia, “Gantry crane operations to transfer containers between trains: a simulation study of a Spanish terminal”, Transp. Plan. Technol. 27(4), 261‒284 (2004).
  • [41] G. Froyland, T. Koch, N. Megow, E. Duane, and H. Wren, “Optimizing the landside operation of a container terminal”, OR spectrum 30(1), 53‒75 (2008).
  • [42] W. Souffriau, P. Vansteenwegen, G.V. Berghe, and D. Van Oudheusden, “Variable neighbourhood descent for planning crane operations in a train terminal”, in Metaheuristics in the Service Industry, pp. 83‒98, Springer, Berlin, Heidelberg, 2009.
  • [43] R. Montemanni, D.H. Smith, A.E. Rizzoli, and L.M. Gambardella, “Sequential ordering problems for crane scheduling in port terminals”, Int. J. Simul. Process Model. 5(4), 348‒361 (2009).
  • [44] P. Guo, W. Cheng, Z. Zhang, M. Zhang, and J. Liang, “Gantry crane scheduling with interference constraints in railway container terminals”, Int. J. Comput. Int. Sys. 6(2), 244‒260 (2013).
  • [45] L. Wang, X. Zhu, and Z. Xie, “Rail mounted gantry crane scheduling in rail–truck transshipment terminal”, Intell. Autom. Soft. Co. 22(1), 61‒73 (2016).
  • [46] A. Otto, X. Li, and E. Pesch, “Two-way bounded dynamic programming approach for operations planning in transshipment yards”, Transp. Sci. 51(1), 325‒342 (2016).
  • [47] G. Ozden and I. Saricicek, “Scheduling trucks in a multi-door cross-docking system with time windows”, Bull. Pol. Ac.: Tech. 67(2), 349‒362 (2019).
  • [48] J. He, Y. Huang, and W. Yan, “Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption”, Adv. Eng. Inf. 29(1), 59‒75 (2015).
  • [49] M. Sha, T. Zhang, Y. Lan, X. Zhou, T. Qin, D. Yu, and K. Chen, “Scheduling optimization of yard cranes with minimal energy consumption at container terminals”, Comput. Ind. Eng. 113, 704‒713 (2017).
  • [50] J. He, “Berth allocation and quay crane assignment in a container terminal for the trade-off between time-saving and energy-saving”, Adv. Eng. Inf. 30(3), 390‒405 (2016).
  • [51] D. Liu and Y.E. Ge, “Modeling assignment of quay cranes using queueing theory for minimizing CO2 emission at a container terminal”, Transp. Res. D. Tans. Environ. 61, 140‒151 (2018).
  • [52] M. Jacyna, M. Wasiak, K. Lewczuk, and M. Kłodawski, “Simulation model of transport system of Poland as a tool for developing sustainable transport”, Arch. Transp. 31(3), 23‒35 (2014).
  • [53] M. Klodawski, R. Jachimowski, I. Jacyna-Golda, and M. Izdebski, “Simulation analysis of order picking efficiency with congestion situations”, Int. J. Simul. Model. 17(3), 431‒443 (2018).
  • [54] K. Lewczuk, “The concept of genetic programming in organizing internal transport processes”, Arch. Transp. 34(2), 61‒74 (2015).
  • [55] K. Sibilski, A. Zyluk, M. Kowalski, “Simulation studies of micro air vehicle”, Journal of KONES 22(4), 243‒252 (2015).
  • [56] I. Jacyna-Gołda, J. Żak, and P. Gołębiowski, “Models of traffic flow distribution for various scenarios of the development of pro-ecological transport system”, Arch. Transp. 32(4), 17‒28 (2014).
  • [57] H.P. Veeke and J.A. Ottjes, “Detailed simulation of the container flows for the IPSI concept”, in Proceedings of the 11th European Simulation Symposium (ESS 1999), October, 1999.
  • [58] L. Bodin, “Routing and scheduling of vehicles and crews, the state of the art”, Comput. Oper. Res. 10(2), 63‒211 (1983).
  • [59] M.B. Duinkerken and J.A. Ottjes, “A simulation model for automated container terminals”, in Proceedings of the Business and Industry Simulation Symposium, vol. 10, pp. 134‒139, 2000.
  • [60] J.A. Ottjes, M.B. Duinkerken, J.J. Evers, and R. Dekker, “Robotised inter terminal transport of containers”, in Proc. 8th European Simulation Symposium, pp. 621‒625, 1996.
  • [61] Konecranes, “Power options for RTGs”. Retrieved from https://www.konecranes.com/sites/default/files/download/konecranes_power_options_brochure_final.pdf (2019).
  • [62] H. Geerlings and R. Duin, “A new method for assessing CO2-emissions from container terminals: a promising approach applied in Rotterdam”, J. Cleaner Prod. 19(6‒7), 657‒666 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1577f10f-0fbd-4b79-84cf-ff8ff7f7dd52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.