PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Selected Geopotential Models in Terms of the GOCE Orbit Determination Using Simulated GPS Observations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work contains a comparative study of the performance of six geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, such models as ULUX_CHAMP2013S, ITG-GRACE 2010S, EIGEN-51C, EIGEN5S, EGM2008, EGM96, were adopted. Different sets of pseudo-range simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. The solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the solutions was slightly enhanced. Different arc lengths were taken for the computation.
Czasopismo
Rocznik
Strony
2761--2780
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, Institute of Geodesy, Olsztyn, Poland
Bibliografia
  • Bobojć, A., and A. Drożyner (2011), GOCE satellite orbit in aspect of selected gravitational perturbations, Acta Geophys. 59, 2, 428-452, DOI: 10.2478/ s11600-010-0052-3.
  • Bock, H., A. Jäggi, D. Švehla, G. Beutler, U. Hugentobler, and P. Visser (2007), Precise orbit determination for the GOCE satellite using GPS, Adv. Space Res. 39, 10, 1638-1647, DOI: 10.1016/j.asr.2007.02.053.
  • Bock, H., A. Jäggi, U. Meyer, P. Visser, J. van den Ijssel, T. van Helleputte, M. Heinze, and U. Hugentobler (2011), GPS-derived orbits for the GOCE satellite, J. Geod. 85, 11, 807-818, DOI: 10.1007/s00190-011-0484-9.
  • Bruinsma, S.L., J.C. Marty, G. Balmino, R. Biancale, C. Foerste, O. Abrikosov, and H. Neumayer (2010), GOCE gravity field recovery by means of the direct numerical method. In: ESA Living Planet Symposium, 28 June – 2 July 2010, Bergen, Norway.
  • Carrion, D., G. Vergos, A. Albertella, R. Barzaghi, I.N. Tziavos, and V.N. Grigoriadis (2015), Assessing the GOCE models accuracy in the Mediterranean area. In: Assessment of GOCE Geopotential Models, Sp. Issue: Newton’s Bull. N. 5, 63-82.
  • Casotto, S., F. Gini, F. Panzetta, and M. Bardella (2013), Fully dynamic approach for GOCE precise orbit determination, Bull. Geofis. Teor. Appl. 54, 4, 367- 384; DOI: 10.4430/bgta0108.
  • Cheng, M., and J.C. Ries (2015), Evaluation of GOCE Gravity Models with SLR Orbit Tests. In: Assessment of GOCE Geopotential Models, Sp. Issue: Newton’s Bull. N. 5, 187-192.
  • de Matos, A.C.O.C., D. Blitzkow, G. do Nascimento Guimarães, M.C.B. Lobianco, and I. de Oliveira Campos (2015), Evaluation of recent GOCE geopotential models in South America. In: Assessment of GOCE Geopotential Models, Sp. Issue: Newton’s Bull. N. 5, 83-104.
  • Drewes, H. (2012), International Centre for Global Earth Models (ICGEM). In: The Geodesist’s Handbook 2012, J. Geod. 86, 10, 932-934, DOI: 10.1007/ s00190-012-0584-1.
  • Drożyner, A. (1995), Determination of orbits with Toruń Orbit Processor system, Adv. Space Res. 16, 12, 93-95, DOI: 10.1016/0273-1177(95)98788-P.
  • ESA (2010), GOCE Level 2 Product Data Handbook, European GOCE Gravity Consortium, ESA Tech. Note GO-MA-HPF-GS-0110, European Space Agency, Noordwijk.
  • ESA (2014), GOCE Flight Control Team; GOCE End-of-Mission Operations Report, Issue 1, July 2014.
  • Eshagh, M., and M. Najafi-Alamdari (2007), Perturbations in orbital elements of a low Earth orbiting satellite, J. Earth Space Phys. 33, 1, 1-12.
  • Förste, Ch., F. Flechtner, R. Schmidt, R. Stubenvoll, M. Rothacher, J. Kusche, H. Neumayer, R. Biancale, J.-M. Lemoine, F. Barthelmes, S. Bruinsma, R. Koenig, and U. Meyer (2008), EIGEN-GL05C – A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, Geophys. Res. Abstr. 10, EGU2008-A-03426.
  • Förste, Ch., S.L. Bruinsma, F. Flechtner, J.Ch. Marty, Ch. Dahle, O. Abrikosov, J.M. Lemoine, H. Neumayer, F. Barthelmes, R. Biancale, and R. König (2014), EIGEN-6C4 – The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse, Geophys. Res. Abstr. 16, EGU2014-3707.
  • Gruber, Th., P.N.A.M. Visser, Ch. Ackermann, and M. Hosse (2011), Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons, J. Geod. 86, 807-818, DOI: 10.1007/s00190-011-0484-9.
  • Heiskanen, W., and H. Moritz (1967), Physical Geodesy, W.H. Freeman and Co., San Francisco.
  • Hirt, C., M. Rexer, and S. Claessens (2015), Topographic evaluation of fifthgeneration GOCE gravity field models globally and regionally. In: Assessment of GOCE Geopotential Models, Sp. Issue: Newton’s Bull. N. 5, 163- 186.
  • Jäggi, A., U. Hugentobler, and G. Beutler (2006), Pseudo-stochastic orbit modeling techniques for low-Earth orbiters, J. Geod. 80, 1, 47-60, DOI: 10.1007/ s00190-006-0029-9.
  • Jäggi, A., H. Bock, U. Meyer, G. Beutler, and J. van den Ijssel (2015), GOCE: assessment of GPS-only gravity field determination, J. Geod. 89, 1, 33-48, DOI: 10.1007/s00190-014-0759-z.
  • Lejba, P., S. Schillak, and E. Wnuk (2007), Determination of orbits and SLR stations’ coordinates on the basis of laser observations of the satellites Starlette and Stella, Adv. Space Res. 40, 1, 143-149, DOI: 10.1016/j.asr. 2007.01.067.
  • Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson (1998), The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA Technical Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt, USA.
  • Mayer-Gürr, T., E. Kurtenbach, A. Eicker, and J. Kusche (2011), The ITG-1Grace 2010 gravity field model, Institute of Geodesy and Geoinformation, Bonn University, Bonn, Germany, available from: http://www.igg.uni-bonn.de/ apmg/index.php?id=itg-grace2010.
  • Melbourne, W., R. Anderle, M. Feissel, R. King, D. McCarthy, D. Smith, B. Tapley, and R. Vincente (1983), Project MERIT Standards, Circ. 167, U.S. Naval Observatory, Washington, D.C., U.S.A.
  • Pail, R., S. Bruinsma, F. Migliaccio, Ch. Förste, H. Goiginger, W.D. Schuh, E. Höck, M. Reguzzoni, J.M. Brockmann, O. Abrikosov, M. Veicherts, T. Fecher, R. Mayrhofer, I. Krasbutter, F. Sansò, and C.Ch. Tscherning (2011), First GOCE gravity field models derived by three different approaches, J. Geod. 85, 819-843, DOI: 10.1007/s00190-011-0467-x.
  • Papanikolaou, Th.D., and D. Tsoulis (2014), Dynamic orbit parameterization and assessment in the frame of current GOCE gravity models, Phys. Earth Planet. In. 236, 1-9, DOI: 10.1016/j.pepi.2014.08.003.
  • Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. 117, B04406, DOI: 10.1029/2011JB0010.1029/ 2011JB008916.
  • Reigber, Ch., H. Jochmann, J. Wünsch, S. Petrovic, P. Schwinzer, F. Barthelmes, K.H. Neumayer, R. König, Ch. Förste, G. Balmino, R. Biancale, J.M. Lemoine, S. Loyer, and F. Perosanz (2005), Earth gravity field and seasonal variability from CHAMP. In: Earth Observation with CHAMP – Results from Three Years in Orbit, Springer, Berlin, 25-30.
  • Rummel, R., D. Muzi, M. Drinkwater, R. Floberghagen, and M. Fehringer (2009), GOCE: Mission overview and early results. In: The 2009 American Geophysical Union Fall Meeting, 14-18 December 2009, San Francisco, USA.
  • Sośnica, K. (2014), Determination of Precise Satellite Orbits and Geodetic Parameters using Satellite Laser Ranging, Astronomical Institute, Faculty of Science, University of Bern, Switzerland.
  • Sośnica, K., D. Thaller, A. Jäggi, R. Dach, and G. Beutler (2012), Sensitivity of LAGEOS orbits to global gravity field models, Artif. Sat. 47, 2, 47-65, DOI: 10.2478/v10018-012-0013-y.
  • Šprlák, M., C. Gerlach, and B.R. Pettersen (2015), Validation of GOCE global gravitational field models in Norway. In: Assessment of GOCE Geopotential Models, Sp. Issue: Newton’s Bull. N. 5, 13-24.
  • Standish, E.M., X.X. Newhall, J.G. Williams, and D.K. Yeomans (1992), Orbital ephemerides of the sun, moon and planets. In: P.K. Seidelmann (ed.), Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill Valley, 279-323.
  • Tapley, B., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, L09607, DOI: 10.1029/2004GL019920.
  • Voigt, C., and H. Denker (2015), Validation of GOCE gravity field models in Germany. In: Assessment of GOCE Geopotential Models, Sp. Issue: Newton’s Bull. N. 5, 37-48.
  • Weigelt, M., T. van Dam, A. Jäggi, L. Prange, M.J. Tourian, W. Keller, and N. Sneeuw (2013), Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking, J. Geophys. Res. 118, 7, 3848-3859, DOI: 10.1002/jgrb.50283.
  • Yi, W. (2012), An alternative computation of a gravity field model from GOCE, Adv. Space Res. 50, 3, 371-384, DOI: 10.1016/j.asr.2012.04.018.
  • Yi, W., R. Rummel, and T. Gruber (2013), Gravity field contribution analysis of GOCE gravitational gradient components, Stud. Geophys. Geod. 57, 174- 202, DOI: 10.1007/s11200-011-1178-8.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1573855b-96b3-43c2-818a-96c26f4e0484
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.