PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

U-Pb zircon geochronology of high-grade charnockites - exploration of pre-Mesoproterozoic crust in the Mazury Complex area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Charnockites – i.e., orthopyroxene-bearing felsic rocks – were formed in a deep-seated dry environment, either under plutonic or high-grade metamorphic conditions. Most charnockites known from the crystalline basement of Poland appear to be of Mesoproterozoic age (1.50–1.54 Ga), cogenetic with the Suwałki Anorthosite Massif, and associated with mangerite and granite members forming the AMCG suite of the Mazury Complex. Genetically distinct rocks, characterised by the presence of anhydrous minerals, e.g., orthopyroxene and garnet, were also recognised along 592 m of the Łanowicze PIG-1 borehole section, within the AMCG suite. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date the complexly zoned zircons. The ages of crystallisation of the charnockite protoliths from various depths at 1837 ± 7, 1850 ± 9, 1842 ± 6, and 1881 ± 16 Ma makes these rocks the oldest dated crust within this part of the Polish basement. The Łanowicze PIG-1 borehole section bears components from neighbouring tectonic domains known from Lithuania: the West and Middle Lithuanian (WL/MLD) domains considered as a continental margin at 1.84–1.86 Ga and the fragmented Latvia-East Lithuania (LEL) domain, where the oldest continental crust was generated at c. 1.89–1.87 Ga. The metamorphic zircon overgrowths document a high-grade event at 1.79 Ga and then constrained at 1.5 Ga. Dating of pre-Mesoproterozoic crust cryptic within the AMCG Mazury Complex provides valuable information on the nature of the pre-existing blocks formed during the long lasting Svecofennian orogeny.
Rocznik
Strony
489--511
Opis fizyczny
Bibliogr 85 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute-National Research Institute, Rakowiecka 4, PL-00-975 Warszawa, Poland
  • Polish Geological Institute-National Research Institute, Rakowiecka 4, PL-00-975 Warszawa, Poland
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
Bibliografia
  • 1. Aranovich, L.Y. and Newton, R.C. 1995. Experimental determination of CO2-H2O activity - composition relations at 600-1000ºC and 6-14 kbar by reversed decarbonation and dehydration reactions. American Mineralogist, 84, 1319-1332.
  • 2. Bagiński, B., Duchesne, J.-C., Vander Auwera, J., Martin, H. and Wiszniewska, J. 2001. Petrology and geochemistry of rapakivi type granites from crystalline basement of NE Poland. Geological Quarterly, 45, 33-52.
  • 3. Bagiński, B. and Krzemińska, E. 2004. Igneous charnockites and related rocks from the Bilwinowo borehole (NE Poland) - a component of AMCG suite - a geochemical approach. Polish Mineralogical Society Special Publications, 24, 69-72.
  • 4. Bagiński, B. and Krzemińska, E. 2005. Various kinds of charnockitic rocks from NE Poland. Polish Mineralogical Society Special Publications, 26, 13-17.
  • 5. Bagiński, B. 2006. Different ages recorded by zircon and monazite in charnockitic rocks from the Łanowicze borehole (NE Poland). Mineralogia Polonica Special Papers, 29, 79.
  • 6. Bagiński, B., Kozłowski, A. and Krzemińska, E. 2006. Fluid inclusion studies - the only key to estimate the crystallization conditions of charnockitic rocks from selected boreholes from NE Poland? Mineralogia Polonica Special Papers, 29, 83-86.
  • 7. Bibikova, E.V, Bogdanova, S.V., Gorbatschev, R., Claesson, S. and Kirnozova, T.I. 1995. Isotopic Age, nature and structure of Precambrian crust of Belarus. Stratigraphy and Geological correlation, 3/6, 591-601.
  • 8. Bingen, B., Austrheim, H. and Whitehouse, M. 2001. Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implication for zircon geochronology. Journal of Petrology, 42, 355-375.
  • 9. Black, L.P, Kamo, S.L, Allen, C.M, Davis, D.W., Aleinikoff, J.N.,Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S. and Foudoulis, C. 2004. Improved 206Pb238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205, 115-140.
  • 10. Bogdanova, S.V., Gintov, O.B., Kurlovich, D.M., Lubnina, N.V., Nilsson, K.M., Orlyuk, M.I., Pashkevich, I.K., Shumlyanskyy, L.V. and Starostenko, V.I. 2013. Late Palaeoproterozoic mafic dyking in the Ukrainian Shield of Volgo-Sarmatia caused by rotation during the assembly of supercontinent Columbia (Nuna). Lithos, 174, 196-216.
  • 11. Bogdanova, S., Gorbatchev, R., Grad, M., Janik, T., Guterch, A., Kozlowskaya, E., Motuza, G., Skridlaite, G., Starostenko, I., Taran L., and Eurobridge and Polonaise working Group 2006. EUROBRIDGE: new insight into the geodynamic evolution of East European craton. In: Gee, D.G. and Stephenson, R.A. (Eds), European Lithosphere Dynamics. Memoirs of the Geological Society of London, 32, 599-625.
  • 12. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L. and Kurlovich, D. 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Research, 259, 5-33.
  • 13. Brown, G.C., Thorpe, R.S. and Webb, P.C. 1984. The geochemical characteristics of granitoids in contrasting arc and comments on magma sources. Journal of the Geological Society London, 141, 413-426.
  • 14. Cherniak, D.J. and Watson, E.B. 2000. Pb diffusion in zircon. Chemical Geology, 134, 289-301.
  • 15. Claesson, S., Bogdanova, S.V., Bibikova, E.V. and Gorbatschev, R. 2001. Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics, 339, 1-18.
  • 16. Clemens, J.D. 1992. Partial melting and granulite genesis: a partisan overview. Precambrian Research, 55, 297-301.
  • 17. Dörr, W., Belka, Z., Marheine, D., Schastok, J., Valverde-Vaquero, P., and Wiszniewska, J. 2002. U-Pb and Ar-Ar geochronology of anorogenic granite magmatism of the Mazury Complex, NE Poland. Precambrian Research, 119, 101-120.
  • 18. De la Roche, H., Leterrier, J., Grandclaude, P. and Marchal, M. 1980. A classification of volcanic and plutonic rocks using R1, R2-diagrams and major element analysis - its relationships with current nomenclature. Chemical Geology, 29,183-210.
  • 19. Duchesne, J.-C. and Wilmart, E. 1997. Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (southwest Norway): a jotunite (hypersthene monzodiorite)-derived A-type granitoid suite. Journal of Petrology, 38, 337-369.
  • 20. Duchesne, J.-C., Martin, H., Bagiński, B., Vander Auwera, J. and Wiszniewska, J. 2010. The origin of the ferroan-potasic granitoids: the case of the hornblende-biotite granite suite of the mesoproterozoic Mazury Complex, NE Poland. The Canadian Mineralogist, 48, 947-968.
  • 21. Ferry, J.M. and Spear, F.S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contribution to Mineralogy and Petrology, 66, 113-117.
  • 22. Frost, R.B. and Frost, C.D. 2008. On charnockites. Gondwana Research, 13, 30-44.
  • 23. Frost, R.B., Frost, C.D., Hulsebosch, T.P. and Swapp, S.M. 2000. Origin of the charnockites of the Louis lake Batholith, wind River Range, Wyoming. Journal of Petrology, 41, 1759-1776.
  • 24. Gehrels, G. 2014. Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42, 127-149.
  • 25. Grantham, G.H., Mendonidis, P., Thomas, R.J. and Satish-Kumar, M. 2012. Multiple origins of charnockite in the Mesoproterozoic Natal belt, Kwazulu-Natal, South Africa. Geoscience Frontiers, 3, 755-771.
  • 26. Hansen, E.C., Janardhan, A.S., Newton, R.C., Prame, W.K.B.N. and Ravindra Kumar, G.R. 1987. Arrested charnockite formation in southern India and Sri Lanka. Contributions to Mineralogy and Petrology, 96, 225-244.
  • 27. Hansen, E.C., Newton, R.C., Janardhan, A.S. and Lindenberg, S. 1995. Differentiation of Late Archean crust in the eastern Dharwar Craton, Krishnagiri-Salem Area, South India. Journal of Geology, 103, 629-651.
  • 28. Harley, S.L., Kelly, N.M. and Möller, A. 2007. Zircon behaviour and the thermal histories of mountain chains. Elements, 3, 25-30.
  • 29. Henry, D.J., Guidotti, C.V, and Thomson, J.A. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Americam Mineralogist, 90, 316-328.
  • 30. Hoskin, P.W.O. and Black, L.P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 423-439.
  • 31. Janardhan, A.S., Newton, R.C., and Hansen, E.C. 1982. The transformation of amphibolites facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India: Contributions to Mineralogy and Petrology, 79, 130-149.
  • 32. Janutyte, I., Majdanski, M., Voss, P.H., Kozlovskaya, E. and PASSEQ Working Group. 2015. Upper mantle structure around the Trans-European Suture Zone obtained by teleseismic tomography. Solid Earth, 6, 73-91.
  • 33. Jenner, G.A., Dunnling, G.R., Malpas, J.J., Brown, M. and Brace, T. 1991. Bay of Islands and Little Port complexes revisited: age, geochemical and isotopic evidence confirm suprasubduction-zone origin. Canadian Journal of Earth Sciences, 28, 1635-1652.
  • 34. Kilpatrick, J.A. and Ellis, D.J. 1992. C-type magmas: igneous charnockites and their extrusive equivalents. Transactions Royal Society Edinburgh: Earth Sciences, 83, 155-164.
  • 35. Kleinfeld, B. and Olesch, M. 2000. Imprint of different fluid generations on granulitic gneisses from central Dronning Maud Land, Antarctica. Journal Geochemistry. Exploration, 69-70, 349-352.
  • 36. Kohn, M.J, Corrie, S.L. and Markley, C. 2015. The fall and rise of metamorphic zircon. American Mineralogist, 100, 897-908.
  • 37. Kohn, M.J. and Kelly, N.M. 2018. Petrology and Geochronology of Metamorphic Zircon. In: Moser, D.E., Corfu, F., Darling, J.R., Reddy, S.M. and Tait, K. (Eds), Microstructural Geochronology: Planetary Records Down to Atom Scale. Geophysical Monograph Series, 232, 35-61. American Geophysical Union; Hoboken and John Wiley & Sons, Inc.; Washington, D.C.
  • 38. Kovaleva, E., Klötzli, U., Habler, G. and Libowitzky, E. 2014. Finite lattice distortion patterns in plastically deformed zircon grains. Solid Earth, 5, 1099-1122.
  • 39. Kröner, A., Wan Y., Liu X. and Dunyi, L. 2014. Dating of zircon from high-grade rocks: Which is the most reliable method? Geoscience Frontiers, 5, 515-523.
  • 40. Krzemińska, E. and Wiszniewska, J. 2017. Magma generation processes within Mazury AMCG suite (EEC), evidence from inherited zircons. Goldschmidt Abstracts, 2017, 2130.
  • 41. Krzemińska, E., Krzemiński, L., Petecki, Z., Wiszniewska, J., Salwa, S., Żaba, J., Gaidzik, K., Williams, I.S., Rosowiecka, O., Taran, L., Johansson, Å., Pécskay, Z., Demaiffe, D., Grabowski, J. and Zieliński, G. 2017. Geological map of crystalline basement in the Polish part of East European Platform, 1:1 000 000. Państwowy Instytut Geologiczny, Warszawa. [In Polish with English summary]
  • 42. Krzemińska, E., Williams, I. and Wiszniewska, J. 2005. A Late Palaeoproterozoic (1.80 Ga) subduction-related mafic igneous suite from Łomża, NE Poland. Terra Nova, 17,442- 449.
  • 43. Kunz, B.E, Regis, D. and Engi, D.M. 2018. Zircon ages in granulite facies rocks: decoupling from geochemistry above 850°C? Contributions to Mineralogy and Petrology, 173, 26.
  • 44. Lahtinen, R., Korja, A., and Nironen, M. 2005. Palaeoproterozoic tectonic evolution. In: Lehtinen, M., Nurmi, P.A. and Rämö, O.T. (Eds), Precambrian Geology of Finland - Key to the Evolution of the Fennoscandian Shield, 481-532. Elsevier; Amsterdam.
  • 45. Ludwig, K.R. 2004. Isoplot/Ex: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 1a (rev. 3).
  • 46. Ludwig, K. 2009. SQUID 2: A User’s Manual, rev. 12 Apr, 2009. Berkeley Geochronology Center, Special Publication, 5, 1-110.
  • 47. Maniar, P.D. and Piccoli, P.M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643.
  • 48. Mansfeld, J. 2001. Age and εNd constraints on the Palaeopro-terozoic tectonic evolution in the Baltic-Sea region. Tectonophysics, 339, 135-151.
  • 49. Mezger, K. and Krogstad, E.J. 1997. Interpretation of discordant U-Pb zircon ages: An evaluation. Journal of Metamorphic Geology, 15, 127-140.
  • 50. Morgan, J.W., Stein, H.J., Hannah, J.L., Markey, R.J. and Wiszniewska, J. 2000. Re-Os study of Fe-Ti-V oxide and Fe-Cu-Ni sulfide deposits, Suwałki Anortosite Massif, Northeast Poland. Mineralium Deposita, 35, 391-401.
  • 51. Morimoto, N. and Subcommittee on Pyroxenes. 1989. Nomenclature of pyroxenes. The Canadian Mineralogist, 27, 143-156.
  • 52. Motuza, G. 2005. Structure and formation of the crystalline crust in Lithuania. Mineralogical Society of Poland, Special Papers, 26, 69-79.
  • 53. Motuza, G. and Motuza, V. 2011. Charnockitic rocks in the crystalline basement of Western Lithuania: implications on their origin and correlation with the Askersund suite in SE Sweden. Geological Quarterly, 55, 63-70.
  • 54. Motuza, G., Motuza, V., Salnikova, E.B. and Kotov, A.B. 2008. Extensive charnockitic-granitic magmatism in the crystalline crust of West Lithuania. Geologia, 61, 1-16.
  • 55. Müller, D. and Groves, D.I. 1997. Potassic igneous rocks and associated gold-copper mineralization. Lecture Notes in Earth Sciences, 238, 1-84.
  • 56. Pearce, J.A., Harris, N.B.W. and Tindle, A.G. 1984. Trace element discrimination diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983.
  • 57. Perchuk, L.L. and Gerya, T.V. 1993. Fluid control of charnockitization. Chemical Geology, 108, 175-186.
  • 58. Rajesh, H.M and Santosh, M. 2012. Charnockites and charnockites. Geoscience Frontiers, 3, 737-744.
  • 59. Reimink, J.R., Davies, J.H., Waldron, J.W. and Rojas, X. 2016. Dealing with discordance: a novel approach for analysing U-Pb detrital zircon datasets. Journal of the Geological Society of London, 173, 577-585.
  • 60.Rimsa, A., Bogdanova, S.V., Skridlaite, G. and Bibikova, E. 2001. The Randamonys TTG-intrusion in southern Lithuania: evidence of a 1.84 Ga island arc. Journal of Conference Abstracts, 6, 368-359.
  • 61. Rubatto, D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184, 123-138.
  • 62. Rubatto, D. 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83, 261-295.
  • 63. Schoene, B. 2014. U-Th-Pb geochronology. In: Treatise on Geochemistry 2nd Edition, pp. 341-378. Elsevier; Amsterdam.
  • 64. Shumlyanskyy, L., Ernst, R.E., Söderlund, U., Billström, K., Mitrokhin, O. and Tsymbal, S. 2016. New U-Pb ages for mafic dykes in the Northwestern region of the Ukrainian shield: coeval tholeiitic and jotunitic magmatism. GFF, 138, 79-85.
  • 65. Skridlaite, G. and Motuza, G. 2001. Precambrian domains in Lithuania: evidence of terrane tectonics. Tectonophysics, 339, 113-133.
  • 66. Skridlaite, G., Wiszniewska, J. and Duchesne, J.-C. 2003. Ferropotassic A-type granites and related rocks in NE Poland and S Lithuania: west of the East European Craton. Precambrian Research, 124, 305-326.
  • 67. Skridlaite, G., Bagiński, B. and Whitehouse, M. 2008. Significance of ~1.5 Ga zircon and monazite ages from charnockites in Southern Lithuania and NE Poland. Gondwana Research, 14, 663-674.
  • 68. Skridlaite, G., Bogdanova, S.V., Taran, L., Bagiński, B., Krzemińska, E., Wiszniewska, J. and Whitehouse, M. 2009. Over 400 m.y. metamorphic history of the Fennoscandian lithospheric segment in the Proterozoic (the East European Craton). Geophysical Research Abstracts, 11, EGU2009- 9095-1. EGU General Assembly.
  • 69. Skridlaite, G., Bogdanova, S., Taran, L. and Bagiński, B. 2014. Recurrent high grade metamorphism recording a 300 Ma long Proterozoic crustal evolution in the western part of the East European Craton. Gondwana Research, 25, 649-667.
  • 70. Skridlaite, G., Whitehouse, M., Bogdanova, S. and Taran, L. 2011. The 1.86-1.84 Ga magmatism in the Western East European Craton (Lithuania): implications for a convergent continental margin. International Goldschmidt Conference Abstracts, 75 (3), 1890.
  • 71. Siliauskas, L., Skridlaite, G., Bagiński, B., Whitehouse, M. and Prusinskiene, S. 2018a. What the ca. 1.83 Ga gedrite-cordierite schists in the crystalline basement of Lithuania tell us about the late Palaeoproterozoic accretion of the East European Craton. GFF, 140, 332-344.
  • 72. Siliauskas, L., Skridlaite, G., Whitehouse, M., and Soesoo, A. 2018b. A ca. 1.89 Ga magmatic complex in eastern Lithuania: a link connecting with the domains in Estonia and Bergslagen terrane in Sweden. Abstracts in 33rd Nordic Geological Winter Meeting, 10th-12th January 2016, Copenhagen, Denmark, p. 59. Dansk Geologisk Forening, Geological Society of Denmark.
  • 73. Spencer, Ch.J., Kirkland, K.L. and Taylor, R.J.M. 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7, 581- 589.
  • 74. Stern, R.J. and Dawoud, A.S. 1991. Late Precambrian (740 Ma) charnockite, enderbite, and granite from Jebel Moya, Sudan: a link between the Mozambique Belt and the Arabian-Nubian Shield? Journal of Geology, 99, 648-659.
  • 75. Stern, R.A., Bodorkos, S., Kamo, S.L., Hickman, A.H., and Corfu, F. 2009. Measurement of SIMS instrumental mass fractionation of Pb-isotopes during zircon dating. Geostandards and Geoanalytical Research, 33, 145-168.
  • 76. Tera, F. and Wasserburg, G. 1972. U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions. Earth and Planetary Science Letters, 17, 36-51.
  • 77. Touret, J.L.R. and Huizenga, J.M 2012. Charnockite microstructures: From Magmatic to metamorphic. Geoscience Frontiers, 3(6), 745-753.
  • 78. Van der Kerkhof, A.M. and Grantham, G.H. 1999. Metamorphic charnockite in contact aureoles around intrusive enderbite from Natal. Contributions to Mineralogy and Petrology, 137, 115-132.
  • 79. Wan, Y.S., Liu, D.Y., Dong Ch., Liu, S., Wang, S. and Yang, E. 2011. U-Th-Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircondating of metadiorite near Qixia, eastern Shandong. Geoscience Frontiers, 2, 137-146.
  • 80. Whitney, D.L. and Evans, B.W. 2010. Abbreviations for names of rock-forming minerals American Mineralogist, 95, 185-187.
  • 81. Williams, I.S. 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben, M.A., Shanks III, W.C. and Ridley, W.I. (Eds), Application of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7, 1-35.
  • 82. Wiszniewska, J. 2002. Age and the genesis of Fe-Ti-V ores and related rocks in the Suwałki Anorthozite Massif (northeastern Poland). Biuletyn Państwowego Instytutu Geologicznego, 401, 1-96. [In Polish with English abstract]
  • 83. Wiszniewska, J., Krzemińska, E., Williams, I.S. and Krzemiński, L. 2016. AMCG suite in NE Poland; subsequent datings of A-type granitoids on SHRIMP. 8th SHRIMP Workshop, 6-10 September 2016, Granada, Abstracts Volume, 87-89, University of Granada; Spain.
  • 84. Wiszniewska, J. and Krzemińska, E. 2017. Peraluminous vein granites from the Suwałki Anorthosite Massif and their tectonic significance - evidence from zircon age study by SHRIMP IIe/MC. Mineralogia, Special Papers, 47, 40.
  • 85. Wybraniec, S. 1999. Transformation and visualization of potential field data. Special Papers of the Polish Geological Institute, 1, 1-88.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-156bc825-2c31-40c7-b39c-dac1e6d8bb0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.