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Abstract: The paper deals with evaluation of bearing capacity of strip foundation on random purely cohesive soil. The approach
proposed combines random field theory in the form of random layers with classical limit analysis and Monte Carlo simulation. For
given realization of random the bearing capacity of strip footing is evaluated by employing the kinematic approach of yield design
theory. The results in the form of histograms for both bearing capacity of footing as well as optimal depth of failure mechanism are
obtained for different thickness of random layers. For zero and infinite thickness of random layer the values of depth of failure
mechanism as well as bearing capacity assessment are derived in a closed form. Finally based on a sequence of Monte Carlo simula-
tions the bearing capacity of strip footing corresponding to a certain probability of failure is estimated. While the mean value of the
foundation bearing capacity increases with the thickness of the random layers, the ultimate load corresponding to a certain probabil-
ity of failure appears to be a decreasing function of random layers thickness.
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1. INTRODUCTION

Soil is a natural medium with properties being a re-
sult of complex and long-term weathering and sedi-
mentation processes. The consequence of this obvious
fact is a strong spatial variability of mechanical and
physical properties of the soil medium. While, the soil
is commonly used for supporting constructions, vari-
ability of its properties may have a significant impact
on the safety of the designed foundations or slopes.
Developing methods for probabilistic modeling of
geotechnical problems with regard to the variability
and randomness of the soil properties is a subject of
interest for many researchers.

Recently in the probabilistic modeling of soil me-
dium the methods that combine Monte-Carlo simula-
tion with Random Fields Theory seem to be of par-
ticular interest. The most popular among these methods
is probably Random Finite Element Method (Griffiths
and Fenton 2001, Fenton and Griffiths 2003) which
uses classical FEM analysis in order to solve individual
Monte-Carlo realization. Since the method is very
time-consuming in order to improve its efficiency
some combined approaches has been developed. To
mention just two examples Al-Bittar and Sobura
(2012) have used sparse polynomial chaos expansion
in order to reduce number of FEM calculations for

probabilistic analysis and Kasama et. al. (2012) pro-
posed efficient approach in which classical formula-
tion of FEM has been replaced with FE formulation of
limit analysis.

It is evident that obtaining accurate results with the
methods, which bases on the random field theory de-
pends mostly on the generation of the random fields,
which satisfactorily reconstruct the statistical measures
of real fields of soil properties. As has been stated in
some recent works (Vessia et al. 2009, Pieczyńska-
-Kozłowska et. al. 2015) generating isotropic field for
that purpose can result in inaccurate results and should
not be accepted in designing practice. The so-called
fluctuation scale, in the case of soil medium is usually
several times greater in the horizontal than in the ver-
tical direction. This means that the parameters of the
soil change along the horizontal direction far less
rapidly than along the vertical one. Taking that into
account it seems that when same simplification of the
random field is to be used the assumption that the soil
medium consist of horizontal layers with finite thick-
ness and infinite length (horizontal scale of fluctuation
equal to infinity) should be associated with relatively
small error.

In the present work the concept of random layers
has been applied for assessment of bearing capacity of
the strip footing within the framework of reliability
theory. The evaluation is obtained as an optimized
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solution of kinematic failure mechanism. The applied
method allows for probability analysis of both esti-
mated value of bearing capacity as well as the depth
of failure mechanism. For zero and infinite thickness
of random layer the values of depth of failure mecha-
nism as well as bearing capacity assessment has been
obtained analytically. In the final part of the work, the
loads corresponding to a certain probability of foun-
dation failure, has been determined.

2. FORMULATION OF THE PROBLEM

Spatial variability of soil parameters in random field
along specified direction can be conveniently measured
by value of so-called fluctuation scale (Vanmarcke
1983), i.e., the length within which the points of ran-
dom field are significantly correlated. According to
the results of in-situ tests (presented for instance in
wok by Uzielli et. al. 2006) the horizontal scale
of fluctuation is usually 10 to 100 times greater than
in the vertical direction. That means that the changes
in soil properties along horizontal direction are 10
to 100 times less rapid than the changes in properties
along vertical direction. In the view of that fact it
could be assumed that the scale of fluctuation in hori-
zontal direction (in comparison with vertical direc-
tion) is equal to infinity. As the result of this assump-
tion the random field with values changing only in
vertical direction can be approximated by the random
layers. The assumption that the parameters of the soil
medium can be satisfactorily represented by set of
horizontal random layers is a crucial for this study.

The generated random field is always one of the
infinite number of possible realizations, therefore for
probabilistic analysis the random field generators are
usually used in the framework of Monte-Carlo simu-
lation. To solve the boundary value problem for indi-
vidual realization the Finite Element or Finite Differ-
ence Method are usually used. Since calculations
performed by such methods usually takes a lot of
time, the whole procedure is a very time-consuming
one, especially for non-linear problems such us de-
termining of critical load for elastic-plastic medium.
Alternative, less time-consuming approach could be to
assess the bearing capacity of the soil medium using
limit state theorems. Such an approach is utilized in
this paper

Exemplary field of random layers together with
assumed kinematic failure mechanism and hodograph
of velocities is shown in Fig. 1. Soil is assumed as
weightless and purely cohesive, so cohesion is the
only random variable in the problem. All the blocks of
mechanism are assumed to be rigid. Additionally, it is
assumed that the horizontal discontinuity line l2 may
lie only along contact of two subsequent computa-
tional layers. Thus, estimation of load capacity is
made only for specified depths of failure mechanism h
equal to multiples of a thickness of the computational
layer.

For the presented failure mechanism the rate of
plastic dissipation is expressed as:

))((2 22213323231212 clvclvlvlvD +++= (1)

where distances li and velocities vi are show in Fig. 1,
c1 denotes average cohesion, identical along lines l12,
l23, l3 and c2 denotes the cohesion along line l2. Due to

Fig. 1. The assumed failure mechanism with hodograph of velocities
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the assumption that considered soil is weightless the
upper bound estimation of bearing capacity of footing
is actually equal to formula (1) divided by v1.

It is worth noting. that knowing width of footing b
and depth of failure mechanism h, all other lengths
can be expressed as the function of these values and,
for instance, l2 and x3 (Fig. 1) as:
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Also all the velocities can be expressed as the
function of v1 and the respective lengths as:
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As can be seen in Fig. 1 c1 being cohesion along
the lines l12, l23 and l3 is equal to average over all
layers located in the range of the failure mecha-
nism, and c2 is equal to minimal cohesion of two
layers contacting along line l2. For specified reali-
zation and given depth of failure mechanism h both
of these values can be easily calculated. Knowing c1

and c2 the geometry of the mechanism can be opti-
mized. By substituting (2) and (3) into (1), differ-
entiating with respect to l2 and x3 and equating de-
rivatives to 0 optimal values of l2 and x3 are
obtained as:
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Substituting (2)–(4) into (1) and dividing by v1 al-
low expressing the final form of upper bound assess-
ment of bearing capacity for considered mechanism
as:
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Monte-Carlo procedure can be now carried out as
follows: For any single realization values of cohesion
are randomly assigned to individual layers in accor-
dance with adopted vertical correlation function for

the field. Then, assuming depths of mechanism of
failure h equal to subsequent multiples of the thick-
ness of computational layer the values of c1 and c2 are
determined and the value of the assessment (5) is cal-
culated. The final value of the bearing capacity as-
sessment for particular realization is equal to a mini-
mum of values obtained for all the considered depths.
This minimum also indicates which of all the values
of h is an optimal one. All steps are then repeated for
the subsequent realization.

The proposed method is very efficient. The nu-
merical procedure written in the Mathematica package
on the modern PC takes 3.5 to 22 minutes to obtain
results for 10 to 200 layers field and 100 000 Monte
Carlo realizations. The results allow for the random
analysis of both the assessment of bearing capacity of
the footing as well as the optimal depth of failure
mechanism. Although the results are obtained in
a discrete manner only for mechanisms with depth h
equal to multiples of the assumed thickness of layer,
the precision of obtaining exact value of h can be
easily improved by increasing the density of compu-
tational discretization of the field (the random layers
can be also divided into a few additional computa-
tional layers).

The presented numerical procedure allows for the
adoption of any correlation structure in the vertical
direction. In this paper it has been assumed that
cohesion, which is the only random variable, is as-
signed for each layer independently. The autocorre-
lation function of the random field corresponding to
random layers realization defined as:

2
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c
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is presented in Fig. 2.

Fig. 2. Autocorrelation function and fluctuation scale
for assumed field structure
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The operator E[.] denotes expectation value, c(x) is
the function of cohesion and μc and 2

cσ  are mean and
variance of cohesion respectively. As can be seen the
function descends linearly from one (meaning the full
correlation) to zero (meaning no correlation) for
length τ from zero to thickness of random layer h1.
For all values of τ grater then h1 the value of the func-
tion is zero. Classically the correlation with value
greater than 0.5 is a interpreted as significant. There-
fore, for the assumed field structure the scale of fluc-
tuation is equal to a half of the thickness of random
layer.

3. NUMERICAL RESULTS

Simulation has been performed for two cases:
a small and a large range of cohesion variation in the
field. In both cases, the cohesion has been described
with uniform probability distribution: the range of
variation has been assumed from 10 kPa to 20 kPa and
from 10 kPa to 40 kPa, respectively. For both of these
cases three different thicknesses of the random layers

have been considered, namely: 0.5 m, 0.05 m and
0.01 m. In all the simulations carried out it has been
assumed that the width of the foundation is equal to
1m and the depth of the domain is 2m (depth of fail-
ure mechanism has been always equal or less than
that). For each considered case Monte-Carlo simula-
tion consisted on 100 000 realizations.

The results in the form of histograms and esti-
mated normal distributions of both assessment of
bearing capacity P as well as the range of the failure
mechanism h have been shown in Figs. 3–8. The
mean and standard deviation have been estimated
using the formulas:
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where J ∈ {P, h} (7)

and are collected in Table 1. As can be seen in both:
the figures and the table the mean of bearing capacity
assessment is grater for greater mean value of cohe-
sion, which is obvious. On the contrary, the range of
failure mechanism seems to be slightly smaller for
grater mean value of cohesion. For both assumed

     

Fig. 3. Histogram and estimated normal distribution. Left: assessment of bearing capacity; right: depth of failure mechanism.
Cohesion range 10–20 kPa, thickness of random layer 0.5 m

     

Fig. 4. Histogram and estimated normal distribution. Left: assessment of bearing capacity; right: depth of failure mechanism.
Cohesion range 10–20 kPa, thickness of random layer 0.05 m
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Fig. 5. Histogram and estimated normal distribution. Left: assessment of bearing capacity; right: depth of failure mechanism.
Cohesion range 10–20 kPa, thickness of random layer 0.01 m

     

Fig. 6 Histogram and estimated normal distribution. Left: assessment of bearing capacity; right: depth of failure mechanism.
Cohesion range 10–100 kPa, thickness of random layer 0.5 m

     

Fig. 7. Histogram and estimated normal distribution. Left: assessment of bearing capacity; right: depth of failure mechanism.
Cohesion range 10–100 kPa, thickness of random layer 0.05 m

     

Fig. 8. Histogram and estimated normal distribution. Left: assessment of bearing capacity; right: depth of failure mechanism.
Cohesion range 10–100 kPa, thickness of random layer 0.01 m
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variability ranges, it can be observed that with the
decreasing value of thickness of random layer the
standard deviation of both bearing capacity assess-
ment P and mechanism depth h also decreasing. Such
decreasing can be also observed in mean value of P
for both assumed ranges of cohesion variation.

Let us assume that thickness of random layer
tends to zero. Since c1 is the average value of cohe-
sion of all the layers located within the depth of fail-
ure mechanism, in the considered case it is equal to
the average of an infinite number of layers, i.e. to the
mean value of cohesion in the field. Additionally, in
any layer with finite thickness grater then zero which
contains line l2 also the infinite number of random
layers with values of cohesion from the whole range
of cohesion variation are located. The value of c2 is
equal to one of these values and the optimal value of
assessment is obtained when it is a value as small as
possible. This means that the best upper bound of
bearing capacity of the footing is achieved when the
line l2 appears in layer with cohesion equal to the
lowest value of cohesion variation. Since values of c1

and c2 do not depend on the realization and are con-
stant in the field, both depth of failure mechanism
and assessment of bearing capacity of the footing can
be determined analytically. Differentiating expres-
sion (5) with respect to h and equating derivatives to
zero the optimum h is obtained as:

1
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Subsequently substituting (8) into (5) assessment
of the force P is determined as:
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The variation for both of these values is equal to
zero.

The formulas (8) and (9) can be also useful in the
case of infinite thickness of random layer. For that
case, the mechanism is actually located in a single
layer with the cohesion depending only on realization.
This means that in all realization c1 and c2 are equal to
each other. Hence (8) becomes:

2
2
bh = (10)

and (9) simplifies to:

cbP )722( +≤ (11)

The depth of failure mechanism (10) for that case
does not depend on the realization and thus its variation
is equal to zero. Contrary the assessment of bearing
capacity (11) depends on the realization but since the
formula is a linear one it easy to conclude that

Table 1. Parameters of estimated normal distribution for the result obtained in simulations

Range of cohesion [kPa] 10–20 10–40

Quantity P [kN] h [m] P [kN] h [m]

Mean and stanard deviation μP σP μh σh μP σP μh σh

0.01 76.5 1.59 0.660 0.082 118.2 4.83 0.613 0.110
0.05 77.0 3.72 0.680 0.139 118.6 11.25 0.641 0.190Random layer

thickness [m]
0.5 75.3 12.36 0.735 0.222 121.7 36.27 0.827 0.343

Fig. 9. Mean value of assessment of bearing capacity
for cohesion variability range 10–20 kPa (left) and 10–40 kPa (right), respectively

Unauthenticated
Download Date | 3/8/16 7:18 PM



Evaluation of bearing capacity of strip footing using random layers concept 37

,)722( cP b μμ +=    ,)722( cP b σσ += (12)

where μc and σc are mean and standard deviation for
cohesion distribution.

Values of P and h obtained using the above for-
mulas for the zero and infinity thickness and the cohe-
sion described with uniform distribution in the ranges
of 10–20 kPa and 10–40 kPa have been summarized
in Table 2. The obtained mean values of assessment
from both tables has been also presented in Fig. 9. As
can be seen the mean value of assessment increases
with the increasing thickness of the random layer.

It should be noted that for zero and infinite thick-
ness of random layer the correlation functions differ
from typical correlation function for finite non-zero
thickness value presented in Fig. 2. The respective
correlation function for this two extreme cases has
been presented in Fig. 10.

4. BEARING CAPACITY
FOR GIVEN PROBABILITY

OF FAILURE

Probability of failure of foundation calculated in
the framework of Monte-Carlo simulation is usually
estimated using the formula:
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where I[.] denotes indicator function, Pi is the bearing
capacity in the realization, L is the load (assumed here
as deterministic) and nF is a number of failure cases.
The problem can be inversed: based on formula (13)
is also possible to calculate value of load such that the
failure probability will be equal to given value,
namely:
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In order to satisfy (14) load value x has to be
greater than pF part of simulation results Pi

For all the cases presented in the previous section
the appropriate values of load for assumed failure
probability equal to 0.05 have been collected in
Table 3 and presented graphically in Fig. 11. As can
be seen load value corresponding to assumed prob-
ability of failure, contrary to the mean values of
bearing capacity, decreases with increasing thickness
of the random layer.

Table 3. The values of load
corresponding to failure probability, equal to 0.05

Range of cohesion [kPa] 10–20 10–40
0 76.10 kN 117.4 kN

0.01 73.90 kN 110.3 kN
0.05 70.84 kN 100.2 kN
0.5 58.91 kN 64.46 kN

Random layer
thickness [m]

∞ 57.47 kN 62.92 kN

Table 2. Results obtained analytically for zero and infinite thickness of random layer

Range of cohesion var. [kPa] 10–20 10–40

Quantity P[kN] h[m] P[kN] h[m]

Mean and stanard deviation μP σP μh σh μP σP μh σh

0 76.1 0 0.645 0 117.4 0 0.592 0Random layer
thickness [m] ∞ 82.11 15.76 0.707 0 136.8 47.41 0.707 0

     

Fig. 10. Autocorrelation function for zero (left) and infinite (right) thickness of random layer
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5. CONLUSIONS

In the present paper concept of random layers has
been proposed to obtain assessment of bearing ca-
pacity of strip footing. The presented approach com-
bines random field theory in the form of random
layers with classical upper bound limit analysis. The
methodology is presented on the example of purely
cohesive soil with the cohesion in the field described
with uniform distribution and simple correlation
structure. Formulation has been used within the
framework of Monte-Carlo simulation. The results in
the form of histograms and distribution for both
bearing capacity of footing as well as optimal depth
of failure mechanism has been presented. For the
thickness of random layer tending to zero and infin-
ity close form solutions has been derived. Based on
the results of simulation and analytical solutions also
the load, which corresponds to given probability of
failure, has been calculated.

The following conclusions can be drawn from the
study:
i) Simplification of the random field involving its

conversion into set of horizontal random layers
can lead to significant improvement in efficiency
of the probabilistic modeling of soil. Since hori-
zontal scale of fluctuation is usually several times
greater than the vertical one, the result of prob-
abilistic analysis performed with this simplifica-
tion, in the case of the typical soil, should not be
burdened with large errors.

ii) A classical upper bound limit analysis applied to
random field can be a useful method for the prob-
ability analysis of geotechnical structures. By com-
bining the method with the concept of random layers
for which average value of the cohesion along dis-

continuity lines can be efficiently calculated a very
potent tool can be obtained.

iii) The mean value of bearing capacity of footing
increases with increasing thickness of random
layer. On the contrary, the load corresponding to
assumed probability of failure decreases with in-
creasing thickness of random layer. The latter ten-
dency would be even more clear under the as-
sumption of smaller (and therefore, from the point
of view of design practice, more appropriate)
probability of failure. This shows the importance
of the application of random fields theory in geo-
technics. In the classical approach, i.e. for homo-
geneous domain with random cohesion values
a high mean value of bearing capacity is obtained,
whereas value of load corresponding to given
structural reliability is much smaller. Given the
data on fluctuation scale, for the same probability
of failure, usually much higher value of load can
be obtained.
The current study is a preliminary one. The pre-

sented analysis are subject to at least two important
limitations:
i) The results are presented for the field with the

simplified correlation structure: the values of co-
hesion has been assigned to individual random
layer independently. The resulting autocorrelation
function decreases linearly. Usually some other
correlation models are assumed. Generation of
random layers with any other correlation struc-
ture is possible by extending the procedure using
more detailed random field generation algorithm
such as Local Average Subdivision (Fenton and
Vanmarcke 1990).

ii) The uniform distribution of cohesion has been as-
sumed which means that all values of cohesion
within the variability range are assumed equally

Fig. 11. The values of load corresponding to failure probability equal to 0.05
for cohesion variability range 10–20 kPa (left) and 10–40 kPa (right), respectively
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probable. Usually based on information obtained
from geological studies some other types of distri-
bution are assumed (e.g. Pieczyńska-Kozłowska et.
al.). Type of distribution can have significant im-
pact on failure probability. This impact should be
examined and possibly some other, more appropri-
ate distribution for cohesion should be selected.
Overcoming of above limitation is subject of further

work of the authors.
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