Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electron Beam Welding (EBM) is a high-energy density fusion process where joint is bombarded to be welded with strongly focused beam of electrons. This method is often used for advanced materials and complex, critical parts, like turbine rotors, but it can also be used for many simpler processes involving large production runs. It is very suitable for butt welding materials of different thicknesses. The aim of this work was to study the microstructure, hardness, and electrochemical corrosion behavior between the dissimilar welds were investigated. Electron Beam Welding of dissimilar steel alloys Inconel 625 and AISI 430 was studied. In welding process there was used only welded materials without filling material. Results showed the microstructure of the weld solidified in dendritic morphology. The microstructure of fusion zone showed that dendrites grew in different directions for each grain. The dendrites and columnar grains are mainly exposed to the fusion boundary with some equiaxed grains. The hardness of the overall joint was non-uniform. The highest hardness of the HAZ/Inconel 625 (the heat-affected zone) was 258 HV, and the lowest weld zone hardness was 178 HV. The decrease in weld hardness may be due to the linear welding energy, which led to grain growth and excessive cooling. HAZ/AISI 430 steel has the lowest current density and the highest corrosion potential. Steel has a more negative corrosion potential and a lower corrosion current density than joints, likely due to higher levels of chromium. In this study, a metallographic investigation of the joints revealed no defects such as microcracks or pores. The melting temperatures of the two materials were quite different, but with the help of gravity, stainless steel acts as a permanent joint, like a rivet.
Wydawca
Rocznik
Tom
Strony
232--242
Opis fizyczny
Bibligr. 35 poz., rys., tab.
Twórcy
autor
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
- Łukasiewicz Research Network – Welding Institute Gliwice, B. Czesława 16-18, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
Bibliografia
- 1. Baddoo N.R. Stainless steel in construction: A review of research, applications, challenges and opportunities. Journal of Constructional Steel Research 2008; 64(11): 1199-1206.
- 2. Eskandari F., Atapour M., Golozar M.A., Sadeghi B., Cavaliere P. Corrosion behavior of friction stir processed AISI 430 ferritic stainless steel. Materials Research Express 2019; 6: 086532. Figure 9. Potentiodynamic polarization curves for specimens in 0.1 M NaCl
- 3. Li Y-F., Hong S-T., Choi H., Han H.N. Solid-state dissimilar joining of stainless steel 316L and Inconel 718 alloys by electrically assisted pressure joining. Materials Characterization 2019; 154:161–168.
- 4. Sroka M., Zieliński A., Hernas A., Kania Z., Rozmus R., Tański T., Śliwa A. The effect of long-term impact of elevated temperature on changes in the microstructure of Inconel 740H alloy. Metalurgija 2017: 56(3-4): 333-336.
- 5. Zieliński A., Sroka M., Dudziak T. Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service. Materials 2018; 11: 2130.
- 6. Zalecki W., Rońda J., Gnot A. High temperature properties of Inconel 625 and Inconel 718 alloys. Works of IMŻ 2013; 3: 35-41.
- 7. Sroka M., Zieliński A., Jonšta Z., Jonšta P. The influence of long-term temperature on the properties and structure of the Inconel 617 welded joint. In: Conference Proceedings of 27th International Conference on Metallurgy and Materials, 2018, 861-866.
- 8. Ramkumar K.D., Patel S.D., Praveen S.S., Choudhury D.J., Prabaharan P., Arivazhagan N. M.A. Xavior, Influence of filler metals and welding techniques on the structure-property relationships of Inconel 718 and AISI 316L dissimilar weldments. Materials & Design 2014; 62: 175–188.
- 9. Ramkumar N.T., Selvakumar M., Narayanasamy P., Begam A.A., Mathavan P. Studies on the structural property, mechanical relationships and corrosion behaviour of Inconel 718 and SS 316L dissimilar joints by TIG welding without using activated flux. Journal of Manufacturing Processes 2017; 30: 290–298.
- 10. Pakieła Z. Microstructure and mechanical properties of Inconel 625 superalloy. Materials Engineering in Plastic Treatment 2010; 3: 143-154.
- 11. Aircraft material norm SAE AMS 5599F, Nickel alloy, corrosion and heat resistant, sheet, strip and plate 62Ni-21,5Cr-9,0Mo-9,0(Cb+Ta), aneelead UNS NO6625.
- 12. Rodriguez R., Hayes R.W., Berbon P.B., Lavernia E.J. Tensile and creep behavior of cryomilled Inco 625. Acta Materialia 2003; 51: 911–929.
- 13. Shankar V., Bhanu Sankara Rao K., Mannan S.L. Microstructure and mechanical properties of Inconel 625 superalloy. Journal of Nuclear Materials 2001; 288: 222-232.
- 14. Golański G., Słania J., Sroka M., Wieczorek P., Urzynicok M., Krawczyk R. Microstructure and mechanical properties of modern 11% Cr heat-resistant steel weld joints. Materials 2021; 14(12): 3430.
- 15. Munteanu A. The electron beam welding of dissimilar materials – case study. In: Proc. of IOP Conference Series: Materials Science and Engineering, 2016, 161, 012058.
- 16. Kah P., Shrestha M., Martikainen J. Trends in Joining Dissimilar Metals by Welding, Applied Mechanics and Materials 2014; 440: 269-276.
- 17. Cortes R., Barragan E.R., Lopez V.H., Ambriz R.R., Jaramillo D. Mechanical properties of Inconel 718 welds performed by gas tungsten arc welding. The International Journal of Advanced Manufacturing Technology 2018; 94: 3949–3961.
- 18. Lin H.L., Wu T.M., Cheng C.M. Effects of flux precoating and process parameter on welding performance of inconel 718 alloy TIG welds. Journal of Materials Engineering and Performance 2014; 23: 125–132.
- 19. Iturbe A., Hormaetxe E., Garay A., Arrazola P.J. Surface integrity analysis when machining Inconel 718 with conventional and cryogenic cooling. Procedia CIRP 2016; 45: 67–70.
- 20. Węglowski M., Blacha S.A. Phillips: Electron beam welding – techniques and trends – review. Vacuum 2016; 130 72-92.
- 21. Węglowski M., Dworak J., Błacha S. Electron beam welding and its characteristics. Institute of Welding Bulletin 2014; 58(3): 5-14.
- 22. Kaur A., Ribton C., Balachandaran W. Electron beam characterisation methods and devices for welding equipment. Journal of Materials Processing Technology 2015; 221: 225–232.
- 23. Ramkumar K.D., Sidharth Dev, Phani Prabhakar K.V., Rajendran R., Giri Mugundan K., Narayanan S. Microstructure and properties of Inconel 718 and AISI 416 laser welded joints, Journal of Materials Processing Technology 2019; 266: 52–62.
- 24. Alizadeh-Sh M., Marashi S.P.H., Pouranvari M. Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties. Materials & Design 2014; 56: 258-263.
- 25. Sroka M., Jonda E., Węglowski M., Błacha S. The corrosion studies of electron beam welded nickel alloy. In: Proc. of International Conference on Materials Science and Manufacturing Engineering MATEC Web of Conferences 2019, 253, 03005.
- 26. Ramkumar K.D., Abraham W.S., Viyash V., Arivazhagan N., Rabel A.M. Investigations on the microstructure, tensile strength and high temperature corrosion. Journal of Manufacturing Processes 2017; 25: 306 –322.
- 27. Mithilesh P., Varun D., Ajay Reddy Gopi Reddy, Devendranath Ramkumar K., Arivazhagan N., Narayanan S. Investigations on Dissimilar Weldments of Inconel 625 and AISI 304. Procedia Engineering 2014; 75: 66-70.
- 28. Wiedniga C., Lochbichler C., Enzinger N., Beal C., Sommitscha C. Dissimilar Electron Beam Welding of Nickel base Alloy 625 and 9% Cr Steel. ProcediEngineering 2014; 86: 184-194.
- 29. PN-EN ISO 17475 : 2010, Polish standard: Corrosion of metals and alloys – Electrochemical test methods. Guidelines for the performance of potentiostatic and potentiodynamic polarization measurements.
- 30. Emadi M., Mostaan H., Rafiei M. Experimental Investigation on the dissimilar laser weld joints between Inconel 625 superalloy and AISI 430 ferritic stainless steel. Journal of Advanced Materials and Processing 2020; 8(1): 3-19.
- 31. Kou S. Welding metallurgy. Jon Wily & Sons Inc, 2003.
- 32. Arivazhagan N., Singh S., Prakash S., Reddy G.M. Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction Welding, Materials & Design 2011; 32: 3036-3050.
- 33. Ramkumar K.D., Mulimani S.S., Ankit K., Kothari A., Ganguly S. Effect of grain boundary precipitation on the mechanical integrity of EBW joints of Inconel 625. Materials Science & Engineering A 2021; 808: 140926.
- 34. Huang C.A., Wang T.H., Lee C.H., Han W.C. A study of the heat-affected zone (HAZ) of an Inconel 718 sheet welded with electron-beam welding (EBW). Materials Science and Engineering A 2005; 398; 275–281.
- 35. Moteshakker A., Danaee I. Microstructure and Corrosion Resistance of Dissimilar Weld-Joints between Duplex Stainless Steel 2205 and Austenitic Stainless Steel 316L. Journal of Materials Science & Technology 2016; 32(3): 282-290.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-155ca572-2208-4a4c-a5dc-23f41e71dd37