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Abstract 
The article deals with the issue of mathematical – statistical modelling of passengers demand for 

suburban bus transport. It is based on time sequences of additive type with linear trend component 
with monthly season rate. We have managed to create in the paper a short-term prognosis for the 
selected type of transport, with the aim to point out the justification of adding the random (residual) 
component into the model for creating the prognosis. For practical reasons a specific mass public 
transport provider has been selected to contribute necessary data in order to elaborate the study.  

INTRODUTION 
The mass transport of people forms an important part of the transportation system as 

whole, national economy and is basically considered a material service for the public. It has 
an important and significant role in performing important functions of inhabited places and 
areas. It is important for the provision of large transport demands and at the same time it has 
no big demands to transport areas, it can provided better safety of travelling and has smaller 
negative impact on the environment as calculated per one transported person.  

The role of the mass public transport itself is given by its properties in relation to the 
satisfaction of transport needs of the population living in the respective area, to environmental 
impacts and investment demands for the traffic infrastructure. Especially today, in the time of 
significant growth of individual motorization, we should consider possibilities for 
improvement especially of the mass transport quality, the technical equipment, technology 
and management organization of the same, on the grounds of which we can expect beneficial 
division of transportation labour in favour of the mass public transport and increase of 
passenger demand for it.  

The analysis of data associated with the intensity of vehicle use is applied in the 
evaluation of a given transport system [2]. The following contribution deals with the issue of 
mathematical – statistical modelling of passenger demand using single-dimensional time 
sequences with the aim of the most accurate prediction possible for the future. This prediction 
is important for transporters from the already mentioned point of view of quality. 
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1. PROBLEM DEFINITION 
In order to meet the objective of this contribution, which rests in the creation of a short-

term prognosis of demand for the following period of one year with the subsequent 
examination of the impact of the non-systemic part in the proposed model, we have chosen a 
particular mass public transport operator. This transporter operates in the area of mass public 
transport, namely in following cities: 
– Liptovský Mikuláš, 
– Ružomberok, 
– Dolný Kubín. 

In addition to it, it also provides international regular and irregular bus transport and urban 
bus transport in following districts: 
– Dolný Kubín, 
– Námestovo, 
– Ružomberok, 
– Trstená, 
– Liptovský Mikuláš. 

Calendar-cleared empirical values of the indicator of the number of transported passengers 
for the period from 1 January 2006 until 31 December 2011 from the said transporter were 
used for practical elaboration. Values relate to numbers of transported passenger by urban bus 
transport in the district Dolný Kubín according to fare divided to student and full fare.  

A method based on quantitative or mathematical – statistical point of view was chosen for 
the elaboration of the prognosis model. Usage of multi-criterion linear regressive model with 
artificial, (0-1) seasonability explaining variables, proved to be the most advantageous for the 
elaboration of the prognosis with regard to statistical significance of the whole model 
(determination coefficient), as well as individual parameters of the same. 

Software program SAS 9.1.3 was used for mathematical expression of the model. Linear 
regression models for determination of point prognosis and interval estimate were created 
separately for time sequences of transported passenger travelling for student fare (SF) and 
separately for full fare. Further models for both fare types were created so as including in 
addition to trend and seasonal component also random (residual) components. Based on such 
additional modelling of the residual component and using decomposition approach, the total 
impact of such component in the model, as well as impact on original prognoses without it, 
could be assessed. Due to large extent of elaboration we include in the contribution only 
results of processed data for student fare for demonstrative purposes. 

2. USED MATERIAL, METHODS AND EMPIRICAL DELIVERABLES 
SOLUTION 
This chapter describes data inputs for decomposition task including performed 

modification, testing method of properties of examined time sequences, proposed models as 
well as empirical outputs. 

2.1. Model of regression task for pupil travel 
In order to choose a suitable type of regression task as specified in [1], it is necessary to 

know the given type of time sequence. Time sequences used in this contribution are additive 
time sequences with linear trend component with monthly seasonability. The chosen multi-
criterion regression task using decomposition approach is based on the basic structure of 
short-term single-dimensional time sequences of additive type, where we subsequently 
transformed the model shape for our needs to: 
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Where:  �     – modelled value of examined indicator [persons / month], 
0b
�  – estimate of initial variable (specifies value of � in time t = 0), 

kb
�  – parameter expressing the constant change of dependent variable � induced by 

the increase of value of respective time variables k = 1, 2, 3, ....12, 
�t     – random (residual) component, 

 tk     – order number of time period, 
 xkt    – artificial variables taking into account seasonability of time sequences. 

The said regression model can be mathematically divided to systemic and non-systemic 
part (see Fig. 1). 

Fig. 1. The division of regression model

Source: Authors 

Creating a model for pupils travel without a random component 
Outputs from the SAS program (see tab. 1) show us the most important indicators relating 

to the said model. They include determination coefficient (R2), which characterizes the overall 
quality of the proposed model, values of parameters (in table 1 – par 2 to 12), as well as the 
estimate of parameters of the trend component. 

Tab. 1. Output from the software program SAS for SF
Model parameters Values Error middle value T Prob>|T| 

Limits 94823 3524 26.9099 0.0001 
Par 2 10636 4315 2.4651 0.0166 
Par 3 3954 4310 0.9174 0.3627 
Par 4 20489 4306 4.758 0.0001 
Par 5 14457 4303 3.3601 0.0014 
Par 6 17557 4299 4.0837 0.0001 
Par 7 12381 4297 2.8816 0.0055 
Par 8 -59470 4294 -13.8488 0.0001 
Par 9 -57521 4292 -13.4008 0.0001 

Par 10 16297 4291 3.7981 0.0003 
Par 11 26816 4290 6.2511 0.0001 
Par 12 19829 4289 4.623 0.0001 

Linear trend  -236.02044 42.7188 -5.525 0.0001 

R2 0.94 
Source: Table elaborated by authors by means of software program [4]
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On the grounds of knowledge of the most important parameters, as well as parameters (b0, 
b1…b12) for modelling the trend and seasonable component of monthly intensity of 
transported people, the respective multi-criterion regression model characterizing the 
dependence ��c was determined: 

t
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  (2) 

The said model describes, as is evident also from the relatively high value of the 
determination coefficient (R2 = 0.94) app. 94% variability of used time sequences. The 
following diagram (Fig. 2) shows courses of curves of the real status of transported 
passengers (blue curve) for the period from 1 January 2006 until 31 December 2011 and 
modelled status (pink curve) created on the basis of relation 2. So-called artificial variables 
reflecting the seasonability, which occurs in time sequences (xnt), were also incorporated in 
the relation. 

The table 2 subsequently describes input data, which are in addition to time sequences of 
the number of transported passengers during individual time periods necessary for the 
estimate of modelled values, on the grounds of setting them in the relation 2. The relation 2 
describes the trend component of the created model (94,823 – 236.02044.t), where values 
from the second column of the table are substituted for t. The said column (t) actually 
expresses numerical sequence of individual periods (months), during which passengers were 
transported. The number of monitored periods is for our case n = 72. 

Fig. 2. Real and modelled number of passenger for SF 

Source: Data provided by the companies concerned and the calculations of the model 2 

Other columns (x2, x3, … x12) contain mentioned artificial variables, which reflect the 
monthly seasonability of time sequences of the number of transported passengers. The 
number of artificial variables added to the parameter t was chosen in the extent x = 11 with 
regard to creation of a short-term extrapolation to the period of one year (2012) or 12 months 
and due to the fact that the variable for the month December is a control variable t (x12 = 0). 
Artificial variables xk = 1 express the numerical order from the column t. The said implies that 
analogically according to (Fig. 1) the seasonal component of the model is formed by its 
second part (see Relation 3). 
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Tab. 2. Input data (example) for the calculation of modelled values of SF
Month  t x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

January 06 1 1 0 0 0 0 0 0 0 0 0 0 
February 06 2 0 1 0 0 0 0 0 0 0 0 0 
March 06 3 0 0 1 0 0 0 0 0 0 0 0 
April 06 4 0 0 0 1 0 0 0 0 0 0 0 
May 06 5 0 0 0 0 1 0 0 0 0 0 0 
June 06 6 0 0 0 0 0 1 0 0 0 0 0 
July 06 7 0 0 0 0 0 0 1 0 0 0 0 

August 06 8 0 0 0 0 0 0 0 1 0 0 0 
September 06 9 0 0 0 0 0 0 0 0 1 0 0 

October 06 10 0 0 0 0 0 0 0 0 0 1 0 
November 06 11 0 0 0 0 0 0 0 0 0 0 1 
December 06 12 0 0 0 0 0 0 0 0 0 0 0 

January 07 13 1 0 0 0 0 0 0 0 0 0 0 
February 07 14 0 1 0 0 0 0 0 0 0 0 0 
March 07 15 0 0 1 0 0 0 0 0 0 0 0 
April 07 16 0 0 0 1 0 0 0 0 0 0 0 
May 07 17 0 0 0 0 1 0 0 0 0 0 0 
June 07 18 0 0 0 0 0 1 0 0 0 0 0 
July 07 19 0 0 0 0 0 0 1 0 0 0 0 

August 07 20 0 0 0 0 0 0 0 1 0 0 0 
September 07 21 0 0 0 0 0 0 0 0 1 0 0 

October 07 22 0 0 0 0 0 0 0 0 0 1 0 
November 07 23 0 0 0 0 0 0 0 0 0 0 1 
December 06 24 0 0 0 0 0 0 0 0 0 0 0 

January 08 25 1 0 0 0 0 0 0 0 0 0 0 
February 08 26 0 1 0 0 0 0 0 0 0 0 0 
March 08 27 0 0 1 0 0 0 0 0 0 0 0 
April 08 28 0 0 0 1 0 0 0 0 0 0 0 
May 08 29 0 0 0 0 1 0 0 0 0 0 0 

. . . . . . . . . . . . . 

. . . . . . . . . . . .   
October 11 70 0 0 0 0 0 0 0 0 0 1 0 

November 11 71 0 0 0 0 0 0 0 0 0 0 1 
December 11 72 0 0 0 0 0 0 0 0 0 0 0 

Source: Table compiled by authors 

txtxtxtxtx
txtxtxtxtxtx

128291911816261029716952157847059
73811265571754571444892039543263610

+++−−

−+++++
     (3) 

Statistical significance of the model as a whole (determination coefficient) can be verified 
by means of F – statistics, formula 4. It compares the calculated value Fr with the respective 
table value of the F – statistics. In general it applies that if Fr is bigger than the table value 
upon the chosen level of significance � and freedom degrees k and n – (k + 1), the respective 
regression model is considered statistically significant and can be used for creating a 
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prognosis (extrapolation) [3]. In our case, when Fr = 1250.75 and with freedom degrees 1 and 
70 and chosen level of significance � = 0.05 (table value F = 3.9778), we can deem this 
condition (see relation 5) fulfilled. In other words, we refuse the zero hypothesis H0 about the 
statistical insignificance of the determination coefficient (R2). Individual parameters of this 
model as well as others were assessed on the grounds of p – value, what is described in detail 
in the following chapter. 
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Where: R2 – determination coefficient [-], 
n  – number of observations (n=72) , 
k – number of explaining variables in the model (degrees of freedom). 
  

( )[ ]1,, +−� knkr FF α       (5) 
9778,375,1250 �

Where: Fr – calculated value of testing statistics [-], 
F�, k, [n – (k +1)] – table value [-], 
� – chosen level of significance (0.05), 
k – number of degrees of freedom (1), 
n – number of observed periods (n=72). 

Factorial extrapolation of the created a model for student fare 
Point prognosis and interval estimate of the number of transported passengers were 

determined for 2012 on the grounds of created model and verifications of the same. Both 
prognosis and estimate were made by leaving out the random (residual) component from the 
model. The extrapolation itself means mechanical prolongation of numerical values used 
before in the model (tab. 2) so as to logically follow one another. 

Tab. 3. Prognosis of the model for SF for 2012 (persons/month)
Month Composed of prognosis U 95 L 95 
January 88230 102790 73670 

February 88231 95871 66752 
March 88232 112170 83050 
April 88233 105902 76783 
May 88234 108767 79647 
June 88235 103354 74235 
July 88236 31267 2147 

August 88237 32980 3861 
September 88238 106562 77442 

October 88239 116845 87725 
November 88240 109622 80502 
December 88241 89557 60437 

Source: Table elaborated by authors on the grounds of model 2 and software program 

So it was necessary to numerically prolong the column t of the table 2 by substituting 
order number above n = 72, together with substituting respective constants (0,1) of columns x2
… x12, so as they logically followed previous values. These prolonged values were then used 



��������			


�

in the relation 2 for creating the prognosis (see relation 6 for the month January and according 
to it analogically for other months). Prognosticated values together with the interval estimate 
for 2012 are calculated in table 3. 

persons

ySF

230880.82919
0.816260.297160.521570.470590.381120.55717
0.457140.489200.95431.6361073.02044,23623894

=+
+++−−++

+++++−=�

   (6) 

Fig. 3 on the following page shows courses of curves of prognosticated values (pink 
curve) for the period 2006 – 2012 and interval estimate generated by the software program 
SAS for the period 2012, where the red curve reflects the upper limit (U 95) and the green 
curve lower limit (L 95) of the interval prognosis of the number of transported passengers. 
The interval estimate implies that modelled transport performance will range in the given 
interval with 95% probability (see tab. 3, columns U 95 and L 95). 

Fig. 3. Point and interval prognosis without the random component for SF for 2012

Source: Prepared on the basis of calculations of authors and software [4] 

Inclusion of random (residual) component in the model for student fare 
We considered in this sub-chapter in addition to the systemic part of the model (trend, 

seasonability) also its non-systemic part, namely the random (residual) component. The 
residue is basically the difference between the real and modelled value of the number of 
transported passengers. Mathematical record can be defined as follows: 

ŽCŽCt yy �−=ε    (7) 

Where: �t – residual member [persons], 
y�c – real value of the number of transported passengers [persons], 
��c – modelled value of the number of transported passengers [persons]. 

A model was proposed on the grounds of the software program SAS, which model 
connects these two parts and basically corresponds to the model 1 with regard to structure. 
This model includes: 
– linear trend, 
– artificial variables reflecting seasonability, 
– autoregression of the sequence p (AR n). 

In order to determine the number of coefficient of autocorrelation of residues 
autoregression equation of residues of sequence p (8) we used as basis the studies [1] and [5]. 
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The Godfrey test of serial correlation was performed prior to quantification of coefficients of 
the autoregression equation, on the grounds of which the highest possible degree of serial 
correlation of residues of time sequences (admissible number of autocorrelation coefficients) 
was determined. The subsequent determination of the exact sequence of autocorrelation of 
residual values of time sequences and confirmation of either positive or negative 
autocorrelation was made on the grounds of Durbin – Watson (DW) tests of serial correlation 
(relation 9 is used as a basis). The autocorrelation means that each observation is statistically 
dependent on the previous one (meaning that if any value grows, the following one will be 
growing as well and vice versa - each value is linear dependent on the previous value).  

The software program SAS determined for each autocorrelation coefficient (�) from the 
Godfrey test, what is basically the estimate of the parameter p, values of the testing criterion 
DW (relation 9). This parameter p is usually in the practice smaller than 1. The hypothesis 
about the negative autocorrelation of residues of the first sequence (p1 = – 0.23445) was 
adopted on the grounds of assessment of DW test outputs, meaning that only one 
autocorrelation coefficient, which was suitable for the DW test, was incorporated into the 
model.  

The auto-regression equation of the first series for each �t in the model can be expressed 
as: 

1. −= tt p εε    (8) 

Where: �t – 1 – previous value of �t,
p – parameter expressing the degree of autocorrelation of residues (p1 = – 0.23445).  
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The following table shows outputs from the software program SAS for the elaboration of 
regression model including important indicators, which were already mentioned in the 
previous sub-chapter, including the respective coefficient of autocorrelation (�) (see 2 line of 
column Values). 

Tab. 4. Output from the software program SAS for SF with random component
Model parameters Values Error middle value T Prob>|T| 

Limits 94069 3389 27,7553 0.0001 
Autoregresion 1 -0.23445 0.1275 -1.8389 0.051 

Par 2 11272 4742 2.3769 0.0208 
Par 3 4579 4238 1.0804 0.2844 
Par 4 21111 4360 4.8421 0.0001 
Par 5 15075 4328 3.4828 0.001 
Par 6 18172 4333 4.1937 0.0001 
Par 7 12991 4329 3.001 0.004 
Par 8 -58864 4329 -13.5963 0.0001 
Par 9 -56921 4320 -13.1768 0.0001 

Par 10 16903 4353 3.8833 0.0003 
Par 11 27378 4204 6.5124 0.0001 
Par 12 20556 4801 4.2814 0.0001 

Linear trend  -232.02204 34.2327 -6.7778 0.0001 
R2 0.95 

Source: Table elaborated by authors by means of software program [4] 
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We elaborated and verified the model on the grounds of calculated parameters similarly as 
the model in the sub-chapter 3, only it takes into account in addition to the trend and seasonal 
component also the random (residual) component �t (see relation 8): 

tt
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   (10) 

The figure 4 on the following page shows the course of curves of real (blue curve) and 
modelled values of time sequences of the number of transported passengers with the addition 
of the random component. 

Fig. 4. Real and modelled number of passengers for SF with random component

Source: Data provided by the companies concerned and the calculations of the model 10 

Factorial extrapolation of the created model for student fare with addition of the 
random component 

Extrapolation in form of point prognosis and interval estimate for 2012 was made after the 
verification of the model. With regard to analogical procedure from the previous two sub-
chapters, only empirical outputs of values are specified below. 

persons

ySF

4408852665,3270.55620
0.378270.903160.921560.864580.991120.17218
0.075150.111210.57941.2721173.02204,23206994
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   (11) 

Fig. 5. Point and interval prognosis with added random component for SF for 2012

Source: Prepared on the basis of calculations of authors and software [4] 
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3. EVALUATION OF THE PROPOSED SOLUTIONS 
The indicator p – value (p – value) was used to evaluate statistical significance of 

individual parameters and coefficients in the model. Values of this indicator enabled us to 
observe changes of the statistical significance of parameters (b0, b1…b12), as well as 
coefficients of autocorrelation (p), with and without the random (residual) component. As can 
be seen on the outputs from the software program SAS (tab. 1, 4), values p – value are 
represented by columns Prob › |T|. Parameters complying with the value p – value ‹ � can be 
therefore on the grounds of the level of significance � = 0,05 chosen by us considered to be 
statistically significant.  

With regard to student fare, it can be said on the grounds of results (column Prob › |T|) that 
all parameters except for the parameter b3 = 0.3627 (par 3, see tab.1) can be considered 
statistically significant at the respectively chosen level of significance. This fact was 
influenced by adding the non-systemic part to the model. The addition of the random 
(residual) component succeeded in, even if not completely removing, then at least reduce the 
statistical insignificance of the parameter b3 to more acceptable level b3 = 0.2844 (see tab. 4). 
The statistical significance of the autocorrelation coefficient p1 = 0,051 is in this case still at 
the acceptable level. Usage of this combined model (see relation 10) succeeded in the increase 
of the level of explanation of the variability of values of time sequence of the prognosticated 
indicator from R2 = 0.94% to R2 = 0.95%. Conclusions of testing for the full fare were similar 
to student fare.  

It can be said also on the grounds of these facts that usage of models combining the 
systemic and non-systemic part with regard to student fare (relation 10) and full fare is the 
most suitable solution. Addition of the random (residual) component in models proved 
justified as it increased the statistical significance of individual parameters as well as whole 
models and given prognoses has thus become more relevant (see tab. 5). 

Tab. 5. Prognosis of the model for SF for 2011 with addition of the random component
Month Composed of prognosis U 95 L 95 
January 88440 102739 74142 

February 81469 96156 66783 
March 97780 112488 83073 
April 91510 106218 76801 
May 94375 109083 79666 
June 88962 103671 74254 
July 16875 31584 2167 

August 18587 33295 3878 
September 92178 106886 77469 

October 102421 117129 87713 
November 95368 110076 80659 
December 74579 89288 59871 

Source: Table elaborated by authors on the grounds of model 11 and software program [4] 

To quantify the reliability of said prognoses for both the student and full fare it is possible 
to perform previously mentioned analysis ex – post. Both real and estimated values for 2011 
for student fare which served as the basis are summarised in the tab. 6.  

With regard to student fare, the deviation of prognosticated values from real ones for 2011 
was only around 1.22% out of the total number of transported passengers, on the grounds of 
which it can be concluded that the respective combined model 10 is relatively accurate. Real 
values of transported passengers provided by the transporter show for years 2006 – 2011 with 
regard to SF an average year-on-year drop by 2.2%. 
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Tab. 6. Values for 2011 for SF (persons/month)
Month Actually values Prognosis 
January 79647 90919 

February 75750 86968 
March 113982 102558 
April 92886 91148 
May 97007 97489 
June 93832 91782 
July 25636 19171 

August 26923 19970 
September 92800 93660 

October 97466 105712 
November 92859 99966 
December 77207 78604 

Source: Elaborated by authors on the grounds of outputs from the software program [4] 

High seasonability of the previous demand of transported people (see Fig. 2) was 
confirmed especially for the student fare. It is characterized by repeated proportionality of 
transported students in the course of the year.   

In relation to year-on-year drop of demand for urban bus transport, determined on the 
grounds of acquired data about the given indicator, the year-on-year drop with regard to SF by 
5.54% can be stated also on the grounds of comparison of 2011 with the prognosticated year 
2012 (see tab. 7). 

Tab. 7. Comparison of transported persons in 2011 and 2012 with regard to SF (persons/month)
Month 2011 2012 Difference  (%) 
January 79647 88440 11.04 

February 75750 81469 7.55 
March 113982 97780 -14.21 
April 92886 91510 -1.48 
May 97007 94375 -2.71 
June 93832 88962 -5.19 
July 25636 16875 -34.17 

August 26923 18587 -30.96 
September 92800 92178 -0.67 

October 97466 102421 5.08 
November 92859 95368 2.70 
December 77207 74579 -3.40 

� 965995 942544 -5.54 
Source: Elaborated by authors 

CONCLUSION AND RECOMMENDATIONS FOR PRACTICE
When drafting a prognosis based on the theory of time sequence, it is very important to 

have sufficiently long time sequence of values (at least 5 years of previous development of 
the indicator in question). However, it should be remembered that the information ability of 
the prognosis falls with the growing number of prognosticated periods. 

When using software program for creating a short-term prognosis or prognosis model, it is 
convenient to verify accuracy of the created model by prognosticating known values that are 
available (prognoses ex – post). And then subsequently perform prediction of the unknown 
future value. In practice it is good if the transport company, which needs very accurate 
prognosis of demand of passengers for a longer period of time, uses for the creation of 
prognosis professional statistical software and experienced analysts, because analysts can 
complete the prognosis created on the grounds of mathematical – statistical methods also with 
their own qualified estimate. 
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The contribution dealing with the determination of future demand of passengers for urban 
bus transport is based on methods based on time sequences. The subject of prognoses was 
time sequences of transported passengers travelling for student and full fare, where empirical 
outputs for the following period were obtained. Such method for prediction of data about the 
number of passengers can help the respective company to correctly plan its technical as well 
as staffing capacities in the future, or also pre-define its price or investment policy. 
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ANALIZA WPŁYWU SKŁADOWEJ 
REZYDUALNEJ PRZY PROGNOZOWANIU 

ZAPOTRZEBOWANIA PASA�ERÓW ZA 
POMOC� JEDNOWYMIAROWYCH 
SEKWENCJI CZASOWYCH TYPU 

ADDYTYWNEGO 

Abstract 
Niniejszy artykuł przedstawia matematyczno-statystyczne modelowanie zapotrzebowania 

pasa�erów na podmiejski transport autobusowy. Analiza jest oparta na sekwencjach czasowych typu 
addytywnego ze składow� trendu liniowego w miesi
cznym przedziale czasowym. W pracy stworzono 
krótkoterminow� prognoz
 dla wybranego 	rodka transportu w celu uzasadnienia dodania losowej 
(rezydualnej) składowej do modelu dla potrzeb tworzenia prognozy. Dla celów praktycznych, autorzy 
wybrali konkretnego dostawc
 usług transportu zbiorowego, który zapewnił dane niezb
dne do 
przeprowadzenia analizy. 
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