Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Essential ingredients for robust control are the ability to cope with different types of system behavior following modeling imperfections and the ability to assure a certain performance level. In this paper, we propose to use an actuator fault-tolerant control law to govern, during experiments, the stabilization of a bicycle robot with an inertial wheel in order to take into account unmodeled uncertainty introduced by using a linearized model in an LQR fashion. Our proposal is illustrated by signal plots and the values of performance indices obtained from a set of experiments.
Rocznik
Tom
Strony
325--334
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Control and Information Engineering, Poznań University of Technology, ul. Piotrowo 3a, 60-965 Poznań, Poland
autor
- Institute of Control and Information Engineering, Poznań University of Technology, ul. Piotrowo 3a, 60-965 Poznań, Poland
Bibliografia
- [1] Block, D.J., Åström, K.I. and Spong, M.W. (2007). The reaction wheel pendulum, Synthesis Lectures on Controls and Mechatronics 1(1): 1–105, DOI: 10.2200/S00085ED1V01Y200702CRM001.
- [2] Chang, S. and Peng, T. (1972). Adaptive guaranteed cost control of systems with uncertain parameters, IEEE Transactions on Automatic Control 17(4): 474–483, DOI: 10.1109/TAC.1972.1100037.
- [3] Drapikowski, P., Goślinski, J. and Owczarkowski, A. (2012). Control and model parameters identification of inertia wheel pendulum, Proceedings of the 9th International Conference on Informatics in Control (ICINCO), Rome, Italy, pp. 574–579.
- [4] Horla, D. and Królikowski, A. (2011). Discrete-time LQG control with actuator failure, Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics, Noordwijkerhout, The Netherlands, (on CD–ROM).
- [5] Horla, D. and Owczarkowski, A. (2015). Robust LQR with actuator failure control strategies for 4DoF model of unmanned bicycle robot stabilised by inertial wheel, 2015 International Conference on Industrial Engineering and Systems Management (IESM), Seville, Spain, pp. 998–1003, DOI: 10.1109/IESM.2015.7380276.
- [6] Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control Systems, Wiley-Interscience, Hoboken, NJ.
- [7] Owczarkowski, A., Lis, M. and Kozierski, P. (2014). Tracking control of an inertial wheel pendulum by LQR regulation, Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, (on CD-ROM).
- [8] Petersen, I. and McFarlane, D. (1992). Optimizing the guaranteed cost in the control of uncertain systems, in M. Mansour et al. (Eds.), Robustness of Dynamical Systems with Parameter Uncertainties, Brikhäuser, Boston, MA, pp. 241–250.
- [9] Smerpitak, K., Ukakimparn, P., Trisuwananwat, T. and Trakoonkootaworn, S. (2012). An unmanned bicycle versus linear quadratic optimal controls, Proceedings of the 12th International Conference on Control, Automation and Systems, JeJu Island, Korea, pp. 1337–1341.
- [10] Xie, L. and Soh, Y. (1995). Guaranteed cost control of uncertain discrete-time systems, Control Theory and Advanced Technology 10(4): 1235–1251.
- [11] Yang, J., Lee, S., Kim, S., Lee, Y. and Kwon, O. (2011). Linear controller design for circular motion of unmanned bicycle, Proceedings of the 11th International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, pp. 893–897.
- [12] Yang, Y., Wang, J. and Soh, Y. (2000a). Reliable LQG control with sensor failures, IEE Proceedings: Control Theory and Applications 147(4): 433–439.
- [13] Yang, Y., Yang, G. and Soh, Y. (2000b). Reliable control of discrete-time systems with actuator failures, IEE Proceedings: Control Theory and Applications 147(4): 428–432.
- [14] Zuo, Z., Ho, D. and Wang, Y. (2010). Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation, Automatica 46(3): 569–576.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1544d73d-3317-46e5-a48b-8b4432d2bc4f