PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Steady and unsteady analysis of NACA 0018 airfoil in vertical-axis wind turbine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical results are presented for aerodynamic unsteady and steady airfoil characteristics of the NACA 0018 airfoil of a two-dimensional vertical-axis wind turbine. A geometrical model of the Darrieus-type wind turbine and the rotor operating parameters used for numerical simulation are taken from the literature. Airfoil characteristics are investigated using the same mesh distribution around the airfoil edges and two turbulence models: the RNG k-ε and the SST Transition. Computed results for the SST Transition model are in good agreement with the experiment, especially for static airfoil characteristics.
Rocznik
Strony
203--212
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
  • Technical University of Denmark, DTU Wind Energy, Department of Wind Energy, Lyngby, Denmark
autor
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
Bibliografia
  • 1. Akimoto H., Hara Y., Kawamura T., Nakamura T., Lee Y.-S., 2013, A conformal mapping technique to correlate the rotating flow around a wing section of vertical axis wind turbine and an equivalent linear flow around a static wing, Environmental Research Letters, 8, 044040
  • 2. Amet E., Maˆıtre T., Pellone C., Achard J.-L., 2009, 2D numerical simulations of bladevortex interaction in a Darrieus turbine, Journal of Fluids Engineering, 131, 111103-1-15
  • 3. Blackwell B.F., 1974, The vertical-axis wind turbine “how it works”, Report SLA-74-0160, Sandia Laboratories, USA
  • 4. Borg M., Shires A., Collu M., 2014, Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part I: Aerodynamics, Renewable and Sustainable Energy Reviews, 39, 1214-1225
  • 5. Danao L.A., Qin N., Howell R., 2012, A numerical study of blade thickness and camber effects on vertical axis wind turbines, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226, 7, 867-881
  • 6. Ferreira C., 2009, The near wake of the VAWT: 2D and 3D views of the VAWT aerodynamics, Ph.D. Thesis, Delft University of Technology
  • 7. Ferreira C., van Bussel G., van Kuik G., 2007, 2D CFD simulation of dynamic stall on a Vertical Axis Wind Turbine: verification and validation with PIV measurements, 45th AIAA Aerospace Sciences Meeting and Exhibit/ASME Wind Energy Symposium, Reno, 16191-16201
  • 8. Ferreira C., van Bussel G.W., van Kuik G.M., Scarano F., 2011, On the use of velocity data for load estimation of a VAWT in dynamic stall, Journal of Solar Energy Engineering, 133, 1, 011006-011006-8
  • 9. Hansen M.O.L., 2008, Aerodynamics of Wind Turbines, Second Edition, Earthscan
  • 10. Hau E., 2006, Wind Turbines, Springer
  • 11. Laneville A., Vittecoq P., 1986, Dynamic stall: the case of the vertical axis wind turbine, Journal of Solar Energy Engineering, 108, 141-145
  • 12. Lichota P., 2013, Maximum Likelihood estimation: a method for flight dynamics – angle of attack estimation, 14th International Carpathian Control Conference, IEEE, Rytro, Poland, 218-221
  • 13. Lichota P., 2016, Inclusion of the D-optimality in multisine manoeuvre design for aircraft parameter estimation, Journal of Theoretical and Applied Mechanics, 54, 1, 87-98
  • 14. Madsen H., Larsen T., Vita L., Paulsen U., 2013, Implementation of the actuator cylinder flow model in HAWC2 for aeroelastic simulations on vertical axis wind turbines, 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Texas, USA
  • 15. Maroński R., 2016, Wind Turbines (in Polish), Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa
  • 16. Marsh P., Ranmuthugala D., Penesis I., Thomas G., 2013, Performance predictions of a straight-bladed vertical axis turbine using double-multiple streamtube and computational fluid dynamics models, Journal of Ocean Technology, 8, 1, 87-103
  • 17. Paraschivoiu I., 2009, Wind Turbine Design with Emphasis on Darrieus Concept, Presses Internationales Polytechnique
  • 18. Ponta F.L., Jacovkis P.M., 2001, A vortex model for Darrieus turbine using finite element techniques, Renewable Energy, 24, 1, 1-18
  • 19. Rogowski K., 2014, Analysis of performance of the Darrieus wind turbine, Ph.D. Thesis, Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Warsaw
  • 20. Rogowski K., Maroński R., 2015, CFD computation of the Savonius rotor, Journal of Theoretical and Applied Mechanics, 53, 1, 37-45
  • 21. Sarlak H., Mikkelsen R., Sarmast S., Sørensen J.N., 2014, Aerodynamic behaviour of NREL S826 airfoil at Re=100,000, Journal of Physics: Conference Series, 524, 1
  • 22. Scheurich F., Fletcher T.M., Brown R.E., 2011. Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine, Wind Energy, 14, 159-177
  • 23. Sheldahl R.E., Klimas P.C., 1981, Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines, Energy Report SAND80-2114, Sandia National Laboratories, Albuquerque, New Mexico
  • 24. Strickland J.H., Smith T., Sun K., 1981, A vortex model of the Darrieus turbine: an analytical and experimental study, Sandia National Laboratories, Technical Report SAND 81-7017
  • 25. Strickland J.H., Webster B.T., Nguyen T., 1979, A vortex model of the Darrieus turbine: an analytical and experimental study, Journal of Fluids Engineering, 101, 500-505
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-154276c6-ef8b-4a17-a241-4e655045ea0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.