PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanical considering thickness stretching

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thickness stretching included formulation of a multi-layered doubly curved shell in small scale is studied in the present work. Out-of-plane normal strain is accounted in our formulation based on a higher-order theory. Based on this theory, the total transverse deflection is divided into three portions named as bending, shear and stretching parts. Transient formulation of the nanoshell is derived using Hamilton’s principle and nonlocal formulation. The natural frequencies of the nanoshell are obtained in terms of main input parameters, such as initial electric and magnetic potentials, nonlocal parameters, aspect ratio, radii ratio and foundation parameters.
Rocznik
Strony
art. no. e196, 2022
Opis fizyczny
Bibliogr. 76 poz., rys., wykr.
Twórcy
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan 87317-51167, Iran
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan 87317-51167, Iran
autor
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
Bibliografia
  • [1] Benguediab S, Semmah A, Chaht FL, Mouaz S, Tounsi A. An investigation on the characteristics of bending, buckling and vibration of nanobeam via nonlocal beam theory. Int J Comput Method. 2014;11(6):13085.
  • [2] Zhang C, Jin Q, Song Y, Wang J, Sun L, Liu H, Dun L, Tai H, Yuan X, Xiao H, Zhu L, Guo S. Vibration analysis of a sandwich cylindrical shell in hygrothermal environment. Nanotech Rev. 2021;10(1):414–30.
  • [3] Wang X, Miao X, Jia D, Gao S. Effects of transverse deformation on free vibration of 2D curved beams with general restraints. Shock Vib. 2017;2017:2104015.
  • [4] Wang Z, Ma L. Effect of thickness stretching on bending and free vibration behaviors of functionally graded graphene reinforced composite plates. Appl Sci. 2021;11(23):11362.
  • [5] Ansari R, Gholami R. Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. Int J Appl Mech. 2016;8(4):1650053.
  • [6] Param D, Gajbhiye V, Bhaiya YM. Free vibration analysis of thick isotropic plate by using 5th order shear deformation theory. Prog Civil Struct Eng. 2021;1(1):1–11.
  • [7] Zhao T-H, Qian W-M, Chu Y-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J Math Inequal. 2021;15(4):1459–72.
  • [8] Chu Y-M, Nazir U, Sohail M, Selim MM, Lee JR. Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 2021;5(3):119.
  • [9] Carrera E, Brischetto S, Cinefra M, Soave M. Effects of thickness stretching in functionally graded plates and shells. Compos Part B. 2011;42(2):123–33.
  • [10] Boulefrakh L, Hebali HC, Abdelbaki B, Abdelmoumen A, Tounsi A, Mahmoud SR. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomech Eng. 2019;18(2):161–78.
  • [11] Thai H-T, Choi D-H. Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates. Compos B. 2014;56:705–16.
  • [12] Chen H, Wang A, Hao Y, Zhang W. Free vibration of FGM sandwich doubly-curved shallow shell based on a new shear deformation theory with stretching effects. Compos Struct. 2017;179:50–60.
  • [13] Zhao T-H, Khan MI, Chu Y-M. Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math Methods Appl Sci. 2021. https://doi.org/10.1002/mma.7310.
  • [14] Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H. Acoustic metamaterials for noise reduction: a review. Adv Mater Technol. 2022;7(6):2698.
  • [15] Khorshidi K, Khodadadi M. Precision closed-form solution for out-of-plane vibration of rectangular plates via trigonometric shear deformation theory. Mech Adv Compos Struct. 2016;3(1):31–43.
  • [16] Vo TP, Thai H-T, Nguyen T-K, Inam F, Lee J. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Compos Struct. 2015;119:1–12.
  • [17] Wang H, Wu X, Zheng X, Yuan X. Virtual voltage vector based model predictive control for a nine-phase open-end winding PMSM with a common DC Bus. IEEE Trans Ind Electr. 2022;69(6):5386–97.
  • [18] Atmane HA, Tounsi A, Bernard F. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int J Mech Mater Des. 2017;13:71–84.
  • [19] Xiao X, Bu G, Ou Z, Li Z. Nonlinear in-plane instability of the confined FGP arches with nanocomposites reinforcement under radially-directed uniform pressure. Eng struct. 2022;252:113670.
  • [20] Xu Y, Zhang H, Yang F, Tong L, Yang Y, Yan D, Wu Y. Experimental study on small power generation energy storage device based on pneumatic motor and compressed air. Energy Convers Manag. 2021;234: 113949.
  • [21] Zhang H, Liu Y, Deng Y. Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring. Adv Struct Eng. 2021;24(5):947–61.
  • [22] Lu N, Wang H, Wang K, Liu Y. Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges. CMES-Comput Model Eng Sci. 2021;127(1):345–60.
  • [23] Ma X, Quan W, Dong Z, Dong Y, Si C. Dynamic response analysis of vehicle and asphalt pavement coupled system with the excitation of road surface unevenness. Appl Math Model. 2022;104:421–38.
  • [24] Hasan SM, Tushar SHK, Hafizur Rahman Md, Shimu AR. An optimized design of electromagnet and float for a magnetic suspension system. Acta Electron Malay. 2019;3(1):14–8.
  • [25] Rashid S, Sultana S, Karaca Y, Khalid A, Chu Y-M. Some further extensions considering discrete proportional fractional operators. Fractals. 2022;30(1):2240026.
  • [26] He ZY, Abbes A, Jahanshahi H, Alotaibi ND, Wang Y. Fractional-order discrete-time SIR epidemic model with vaccination: Chaos and complexity. Mathematics 2022;10(2):165. https://doi.org/10.3390/math10020165.
  • [27] Hajiseyedazizi SN, Samei ME, Alzabut J, Chu Y-M. On multistep methods for singular fractional q-integro-differential equations. Open Math. 2021;19:1–28.
  • [28] Zhang Y, Li HN, Li C, et al. Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. 2021. https://doi.org/10.1007/s40544-021-0536-y.
  • [29] Cui X, Li CH, Ding WF, et al. Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin J Aeronaut. 2021. https://doi.org/10.1016/j.cja.2021.08.011.
  • [30] Liu M, Li C, Zhang Y, et al. Cryogenic minimum quantity lubrication machining: From mechanism to application. Front Mech Eng. 2021;16(4):649–97.
  • [31] Gao T, Li C, Wang Y, et al. Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Compos Struct. 2022;286:115232.
  • [32] Jia D, Zhang Y, Li C. Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Trib Int. 2022;169:107461.
  • [33] Li BK, Li CH, Zhang YB, et al. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin J Aeronaut. 2016;29(4):1084–95.
  • [34] Gao T, Zhang Y, Li C, Wang Y, et al. Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front Mech Eng. 2022. https:// doi. org/ 10. 1007/s11465-022-0680-8.
  • [35] Guan H, Huang S, Ding J, Tian F, Xu Q, Zhao J. Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater.2020;187:122–34.
  • [36] Ebrahimi N, Tadi Beni Y. Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel Compos Struct. 2016;22(6):1301–36.
  • [37] Alibeigi B, Tadi Beni Y, Mehralian F. On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams. Eur Phys J Plus. 2018;133:133.
  • [38] Wang M-K, Hong M-Y, Xu Y-F, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J Math Inequal. 2020;14(1):1–21.
  • [39] Wang H, Zheng X, Yuan X, Wu X. Low-complexity model predictive control for a nine-phase open-end winding pmsm with deadtime compensation. IEEE Trans Power Electron. 2022. https://doi.org/10.1109/TPEL.2022.3146644.
  • [40] Alibeigi B, Tadi Beni Y. On the size-dependent magneto/electromechanical buckling of nanobeams. Eur Phys J Plus. 2018;133:398.
  • [41] Ghobadi A, Golestanian H, Tadi Beni Y, Żur KK. On the sizedependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate. Commun Nonlinear Sci Numer Sim. 2021;95:105585.
  • [42] Shooshtari A, Razavi S. Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation. Compos Part B. 2015;78:95–108.
  • [43] Othman MIA, Said S, Marin M. A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model. Int J Numer Meth Heat Fluid Flow. 2019;29(12):4788–806.
  • [44] Marin M, Othman MIA, Seadawy AR, Carstea C. A domain of influence in the Moore–Gibson–Thompson theory of dipolar bodies. J Taibah Univ Sci. 2020;14(1):653–60.
  • [45] Touratier M. An efficient standard plate theory. Int J Eng Sci. 1991;29(8):901–16.
  • [46] Zenkour AM. Generalized shear deformation theory for bending analysis of functionally graded plates. Appl Math Model. 2006;30:67–84.
  • [47] Wei J, Xie Z, Zhang W, Luo X, Yang Y, Chen B. Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading. Eng Struct. 2021;230:111599.
  • [48] Mantari JL, Soares CG. A novel higher-order shear deformation theory with stretching effect for functionally graded plates. Compos B. 2013;45(1):268–81.
  • [49] Żur KK, Arefi M, Kim J, Reddy JN. Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on non-local modified higher-order sinusoidal shear deformation theory. Compos B. 2020;182:107601.
  • [50] Huang H, Huang M, Zhang W, Yang S. Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases. Struct Infrastruct Eng. 2021;17(9):1210–27.
  • [51] Zenkour AM, Radwan AF. Compressive study of functionally graded plates resting on Winkler—Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory. Arch Civ Mech Eng. 2018;18:645–58.
  • [52] Farajpour M, Yazdi RH, Rastgoo A, Loghmani M, Mohammadi M. Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos Struct. 2016;140:323–36.
  • [53] Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. J Appl Mech. 2001;68(4):608–18.
  • [54] Nazeer M, Hussain FI, Khan M, et al. Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl Math Comput. 2022;420:126868.
  • [55] Iqbal MA, Wang Y, Miah MM, Osman MS. Study on date–Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract. 2022;6(1):4.
  • [56] Chu H-H, Zhao T-H, Chu Y-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math Slovaca. 2020;70(5):1097–112.
  • [57] Chu Y-M, Shankaralingappa BM, Gireesha BJ, et al. Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl Math Comput. 2022;419:126883.
  • [58] Zhao T-H, Wang M-K, Chu Y-M. On the bounds of the perimeter of an ellipse. Acta Math Sci. 2022;42(2):491–501.
  • [59] Wang F-Z, Khan MN, Ahmad I, et al. Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals. 2022;30(2):22400051.
  • [60] Jin F, Qian Z-S, Chu Y, Rahman M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J Appl Anal Comput. 2022;12(2):790–806.
  • [61] Zhao T-H, Wang M-K, Chu Y-M. Concavity and bounds involving generalized elliptic integral of the first kind. J Math Inequal. 2021;15(2):701–24.
  • [62] Zhao T-H, He Z-Y, Chu Y-M. On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 2020;5(6):6479–95.
  • [63] Zhao T-H, Wang M-K, Chu Y-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020;5(5):4512–28.
  • [64] Zhao T-H, Wang M-K, Zhang W, Chu Y-M. Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl. 2018;2018:251.
  • [65] Chu Y-M, Zhao T-H. Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J Inequal Appl. 2015;2015:396.
  • [66] He Z-Y, Abbes A, Jahanshahi H, Alotaibi ND, Wang Y. Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity. Mathematics. 2022;10(2):165.
  • [67] Zhao T-H, Zhou B-C, Wang M-K, Chu Y-M. On approximating the quasi-arithmetic mean. J Inequal Appl. 2019;2019:12.
  • [68] Zhao T-H, Yang Z-H, Chu Y-M. Monotonicity properties of a function involving the psi function with applications. J Inequal Appl. 2015;2015:193.
  • [69] Chu Y-M, Wang H, Zhao T-H. Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means. J Inequal Appl. 2014;2014:299.
  • [70] Zhao T-H, Qian W-M, Chu Y-M. On approximating the arc lemniscate functions. Indian J Pure Appl Math. 2022;53:316–29.
  • [71] Song Y-Q, Zhao T-H, Chu Y-M, Zhang X-H. Optimal evaluation of a Toader-type mean by power mean. J Inequal Appl. 2015;408:12.
  • [72] Huang H, Guo M, Zhang W, Huang M. Seismic behavior of strengthened RC columns under combined loadings. J Bridge Eng. 2022. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001871.
  • [73] Huang X, Cao M, Wang D, Li X, Fan J, Li X. Broadband polarization-insensitive and oblique-incidence terahertz metamaterial absorber with multi-layered graphene. Opt Mater Express. 2022;12(2):811.
  • [74] Kiani Y, Shakeri M, Eslami MR. Thermoelastic free vibration and dynamic behavior of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation. Acta Mech. 2012;223:1199–218.
  • [75] Sun H, Zhao T-H, Chu Y-M, Liu B-Y. A note on the Neuman-Sandormean. J Math Inequal. 2014;8(2):287–97.
  • [76] Peng Y, Xu Z, Wang M, Li Z, Peng J, Luo J, Yang Z. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renew Energy. 2021;172:551–63. https://doi.org/10.1016/j.renene.2021.03.064.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-152b6408-9568-4ef4-bd1f-95acdc9f9aec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.