PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

InAs light-to-heavy hole effective mass ratio determined experimentally from mobility spectrum analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
Careful selection of the physical model of the material for a specific doping and selected operating temperatures is a non-trivial task. In numerical simulations that optimize practical devices such as detectors or lasers architecture, this challenge can be very difficult. However, even for such a well-known material as a 5 μm thick layer of indium arsenide on a semiinsulating gallium arsenide substrate, choosing a realistic set of band structure parameters for valence bands is remarkable. Here, the authors test the applicability range of various models of the valence band geometry, using a series of InAs samples with varying levels of p-type doping. Carefully prepared and pretested the van der Pauw geometry samples have been used for magneto-transport data acquisition in the 20-300 K temperature range and magnetic fields up to ±15 T, combined with a mobility spectra analysis. It was shown that in a degenerate statistic regime, temperature trends of mobility for heavy- and light-holes are uncorrelated. It has also been shown that parameters of the valence band effective masses with warping effect inclusion should be used for selected acceptor dopant levels and range of temperatures.
Rocznik
Strony
art. no. e144567
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Dept. of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Faculty of Cybernetics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Dept. of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
  • Dept. of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
Bibliografia
  • [1] Kroemer, H. The 6.1Å family (InAs, GaSb, AlSb) and its hetero-structures: a selective review. Physica E 20, 196-203 (2004). https://doi.org/10.1016/j.physe.2003.08.003
  • [2] Webster, P. T. et al. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy. J. Appl. Phys. 118, 245706 (2015). https://doi.org/10.1063/1.4939293
  • [3] Mueller, S. et al. Edge transport in InAs and InAs/GaSb quantum wells. Phys. Rev. B 96, 075406 (2017). https://doi.org/10.1103/PhysRevB.96.075406
  • [4] Wrobel, J. et al. Analysis of temperature dependence of dark current mechanisms in mid-wavelength infrared pin type-II superlattice photodiodes. Sens. Mater 26, 235-244 (2014). https://sensors.myu-group.co.jp/sm_pdf/SM987.pdf
  • [5] Bryllert, T., Wernersson, L., Froberg, L. E. & Samuelson, L. Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron Device Lett. 27, 323-325 (2006). https://doi.org/10.1109/LED.2006.873371
  • [6] Tschirky, T. et al. Scattering mechanisms of highest-mobility InAs/AlGaSb quantum wells. Phys. Rev. B 95, 115304 (2017). https://doi.org/10.1103/PhysRevB.95.115304
  • [7] Rogalski, A. Infrared and Terahertz Detectors. Third Edition (CRC Press, 2019).
  • [8] Kang, S. S. et al. InAs on GaAs photodetectors using thin InAlAs graded buffers and their application to exceeding short-wave infrared imaging at 300 K. Sci. Rep. 9, 12875 (2019). https://doi.org/10.1038/s41598-019-49300-z
  • [9] Pan, D. et al. Dimension engineering of high-quality InAs nano-structures on a wafer scale. Nano Lett. 19, 1632-1642 (2019). https://doi.org/10.1021/acs.nanolett.8b04561
  • [10] Pidgeon, C. R., Mitchell, D. L. & Brown, R. N. Interband magnetoabsorption in InAs and InSb. Phys. Rev. 154, 737-742 (1967). https://doi.org/10.1103/PhysRev.154.737
  • [11] Adachi, E. Energy band parameters of InAs at various temperatures. J. Phys. Soc. Japan 24, 1178-1178 (1968). https://doi.org/10.1143/JPSJ.24.1178
  • [12] Matossi, F. & Stern, F. Temperature dependence of optical absorp-tion in p-type indium arsenide. Phys. Rev. 111, 472-475 (1958). https://doi.org/10.1103/PhysRev.111.472
  • [13] Braunstein, R. & Kane, E. O. The valence band structure of the III–V compounds. J. Phys. Chem. Solids 23, 1423-1431 (1962). https://doi.org/10.1016/0022-3697(62)90195-6
  • [14] Kranzer, D. Mobility of holes of zinc-blende III–V and II–VI compounds. Phys. Status Solidi A 26, 11-52 (1974). https://doi.org/10.1002/pssa.2210260102
  • [15] Hrivnák, L. New relations for band-edge offsets in lattice matched heterojunctions. Acta Phys. Slovaca 38, 346-357 (1988).
  • [16] Fischetti, M. V. & Higman, J. M. Theory and Calculation Of The Deformation Potential Electron-Phonon Scattering Rates in Semiconductors. in Monte Carlo Device Simulation: Full Band and Beyond (ed. Hess K.) 123-160 (Springer, US, 1991).
  • [17] Krijn, M. P. C. M. Heterojunction band offsets and effective masses in III-V quaternary alloys. Semicond. Sci. Technol. 6, 27-31 (1991). https://doi.org/10.1088/0268-1242/6/1/005
  • [18] Davidovich, M. A. Effects of carrier mass differences on the I-V characteristics of resonant interband tunneling structures in the presence of parallel magnetic field. J. Appl. Phys. 78, 5467-5473 (1995). https://doi.org/10.1063/1.359662
  • [19] Mikhailova, M. P. Indium Arsenide (InAs). in Handbook Series on Semiconductor Parameters (eds. Levinshtein, M., Rumyantsev, S.& Shur, M.) Ch. 7, 147-168 (World Scientific, 1996).
  • [20] Boykin, T. B., Klimeck, G., Bowen, R. C. & Lake, R. Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results. Phys. Rev. B 56, 4102-4107 (1997). https://doi.org/10.1103/PhysRevB.56.4102
  • [21] Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815-5875 (2001). https://doi.org/10.1063/1.1368156
  • [22] Kim, Y.-S., Hummer, K. & Kresse, G. Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals. Phys. Rev. B 80, 035203 (2009). https://doi.org/10.1103/PhysRevB.80.035203
  • [23] Kim, J. & Fischetti, M. V. Electronic band structure calculations for biaxially strained Si, Ge, and III-V semiconductors. J. Appl. Phys. 108, 013710 (2010). https://doi/org/10.1063/1.3437655
  • [24] Kim, Y.-S., Marsman, M., Kresse, G., Tran, F. & Blaha, P. Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors. Phys. Rev. B 82, 205212 (2010). https://doi.org/10.1103/PhysRevB.82.205212
  • [25] Çakan, A., Sevik, C. & Bulutay, C. Strained band edge characteristics from hybrid density functional theory and empirical pseudopotentials: GaAs, GaSb, InAs and InSb. J. Phys. D 49, 1–9 (2016). https://doi.org/10.1088/0022-3727/49/8/085104
  • [26] Apollinari, G., Prestemon, S. & Zlobin, A. V. Progress with high-field superconducting magnets for high-energy colliders. Annu. Rev. Nucl. Part. Sci. 65, 355-377 (2015). https://doi.org/10.1146/annurev-nucl-102014-022128
  • [27] Beck, W. A. & Anderson, J. R. Determination of electrical transport properties using a novel magnetic field‐dependent Hall technique. J. Appl. Phys. 62, 541-554 (1987). https://doi.org/10.1063/1.339780
  • [28] Wróbel, J., Złotnik, S., Boguski, J., Kojdecki, M. & Wróbel, J. Charakteryzacja wielokanałowego transportu nośników ładunku dla epitaksjalnych struktur półprzewodnikowych. Przeglad Elektro- techniczny 98, 228-230 (2022). https://doi.org/10.15199/48.2022.09.53 (in Polish)
  • [29] Benyahia, D. et al. Molecular beam epitaxial growth and charac-terization of InAs layers on GaAs (001) substrate. Opt. Quantum Electron. 48, 428 (2016). https://doi.org/10.1007/s11082-016-0698-4
  • [30] Kowalewski, A., Martyniuk, P., Markowska, O., Benyahia, D. & Gawron, W. New wet etching solution molar ratio for processing T2SLs InAs/GaSb nBn MWIR infrared detectors grown on GaSb substrates. Mater. Sci. Semicond. Process. 41, 261-264 (2016). https://doi.org/10.1016/j.mssp.2015.08.034
  • [31] Zlotnik, S. et al. Facile and electrically reliable electroplated gold contacts to p-type InAsSb bulk-like epilayers. Sensors 21, 5272 (2021). https://doi.org/10.3390/s21165272
  • [32] Kowalewski, A., Wróbel, J., Boguski, J., Gorczyca, K. & Martyniuk, P. Semiconductor contact layer characterization in the context of Hall-effect measurements. Metrol Meas Syst. 26, 109-114 (2019).https://doi.org/10.24425/mms.2019.126324
  • [33] Kala, H. et al. Heavy and light hole transport in nominally undopedGaSb substrates. Appl. Phys. Lett. 106, 032103 (2015).https://doi.org/10.1063/1.4906489
  • [34] Antoszewski, J., Seymour, D. J., Faraone, L., Meyer, J. R. &Hoffman, C. A. Magneto-transport characterization usingquantitative mobility-spectrum analysis. J. Electron. Mater. 24,1255-1262 (1995). https://doi.org/10.1007/bf02653082
  • [35] Rothman, J., Meilhan, J., Perrais, G., Belle, J. P. & Gravrand, O.Maximum entropy mobility spectrum analysis of HgCdTe hetero-structures. J. Electron. Mater. 35, 1174-1184 (2006).https://doi.org/10.1007/s11664-006-0238-2
  • [36] Antoszewski, J., Umana-Membreno, G. A. & Faraone, L. High- resolution mobility spectrum analysis of multicarrier transport in advanced infrared materials. J. Electron. Mater. 41, 2816-2823(2012). https://doi.org/10.1007/s11664-012-1978-9
  • [37] Piper, L. F. J., Veal, T. D., Lowe, M. J. & McConville, C. F. Electrondepletion at InAs free surfaces: Doping-induced acceptorlike gap states. Phys. Rev. B 73, 195321 (2006).https://doi.org/10.1103/PhysRevB.73.195321
  • [38] Olsson, L. Ö. et al. Charge accumulation at InAs surfaces. Phys. Rev.Lett. 76, 3626-3629 (1996).https://doi.org/10.1103/PhysRevLett.76.3626
  • [39] Wrobel, J. et al. Locally-strain-induced heavy-hole-band splittingobserved in mobility spectrum of p-type InAs grown on GaAs. Phys.Status Solidi-Rapid Res. Lett. 14, 1900604 (2020).https://doi.org/10.1002/pssr.201900604
  • [40] Yao, Y., Bo, B. & Liu, C. The hopping variable range conduction inamorphous InAs thin films. Curr. Appl. Phys. 18, 1492-1495 (2018)https://doi.org/10.1016/j.cap.2018.09.005
  • [41] Śnieżek, D. et al. Quantum transport and mobility spectrum of topo-logical carriers in (001) SnTe/PbTe heterojunctions. Phys. Rev. B 107, 045103 (2023). https://doi.org/10.1103/PhysRevB.107.045103
  • [42] Diakite, Y. I., Malozovsky, Y., Bamba, C. O., Franklin, L. &Bagayoko, D. First principle calculation of accurate electronic and related properties of zinc blende indium arsenide (zb-InAs).Materials 15, 3690 (2022). https://doi.org/10.3390/ma15103690
  • [43] Boykin, T. B., Gamble, L. J., Klimeck, G. & Bowen, R. C. Valence-band warping in tight-binding models. Phys. Rev. B 59, 7301-7304(1999). https://doi.org/10.1103/PhysRevB.59.7301
  • [44] Mecholsky, N. A., Resca, L., Pegg, I. L. & Fornari, M. Theory ofband warping and its effects on thermoelectronic transportproperties. Phys. Rev. B 89, 155131 (2014).https://doi.org/10.1103/PhysRevB.89.155131
  • [45] Resca, L., Mecholsky, N. A. & Pegg, I. L. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures.Physica B Condens. Matter. 522, 66-74 (2017).https://doi.org/10.1016/j.physb.2017.07.046
  • [46] Ioffe database (InAs), http://www.ioffe.ru/SVA/NSM/Semicond/ InAs/bandstr.html#Masses (1990).
  • [47] Nakwaski, W. Effective masses of electrons and heavy holes in GaAs, InAs, A1As and their ternary compounds. Physica B Condens. Matter210, 1-25 (1995). https://doi.org/10.1016/0921-4526(94)00921-H
  • [48] Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parametersfor III-V compound semiconductors and their alloys. J. Appl. Phys.89, 5815-5875 (2001). https://doi.org/10.1063/1.1368156
  • [49] Ram-Mohan, L. R., Yoo, K. H. & Moussa, J. The Schrödinger–Poisson self-consistency in layered quantum semiconductorstructures. J. Appl. Phys. 95, 3081-3092 (2004).https://doi.org/10.1063/1.1649458
  • [50] Lackner, D. et al. InAs/InAsSb strain balanced superlattices foroptical detectors: Material properties and energy band simulations. J. Appl. Phys. 111, 034507 (2012).https://doi.org/10.1063/1.3681328
  • [51] Kopytko, M. et al. Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors. J. Electron. Mater. 44, 158-166(2015). https://doi.org/10.1007/s11664-014-3511-9
  • [52] Ting, D. Z. et al. Long and very long wavelength InAs/InAsSb super-lattice complementary barrier infrared detectors. J. Electron. Mater.51, 4666-4674 (2022). https://doi.org/10.1007/s11664-022-09561-3
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. This work has been completed with the financial support of the Ministry of Education and Science (MEiN) under the program “Regional Initiative of Excellence” in 2019–2023; project no. 014/RID/2018/19. funding amount of 4 589 200.00 PLN. Additionally, G.A.U.M., J. A., and L. F contribution to this work was supported by the Australian Research Council (DP200103648).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-152527d4-883e-48f5-963c-6d501b1efa67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.