PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of antibiotic resistance genes in wastewater treatment plant : molecular and classical approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykrywanie genów oporności na antybiotyki w oczyszczalni ścieków : podejście klasyczne i biologii molekularnej
Języki publikacji
EN
Abstrakty
EN
Antibiotics are a group of substances potentially harmful to the environment. They can play a role in bacterial resistance transfer among pathogenic and non-pathogenic bacteria. In this experiment three representatives of medically important chemotherapeutics, confirmed to be present in high concentrations in wastewater treatment plants with HPLC analysis were used: erythromycin, sulfamethoxazole and trimethoprim. Erythromycin concentration in activated sludge was not higher than 20 ng L−1. N-acetylo-sulfamethoxazole concentration was 3349 ± 719 in winter and 2933 ± 429 ng L−1 in summer. Trimethoprim was present in wastewater at concentrations 400 ± 22 and 364 ± 60 ng L−1, respectively in winter and summer. Due to a wide variety of PCR-detectable resistance mechanisms towards these substances, the most common found in literature was chosen. For erythromycin: erm and mef genes, for sulfamethoxazole: sul1, sul2, sul3 genes, in the case of trimethoprim resistance dhfrA1 and dhfr14 were used in this study. The presence of resistance genes were analyzed in pure strains isolated from activated sludge and in the activated sludge sample itself. The research revealed that the value of minimal inhibitory concentration (MIC) did not correspond with the expected presence of more than one resistance mechanisms. Most of the isolates possessed only one of the genes responsible for a particular chemotherapeutic resistance. It was confirmed that it is possible to monitor the presence of resistance genes directly in activated sludge using PCR. Due to the limited isolates number used in the experiment these results should be regarded as preliminary.
PL
Antybiotyki to grupa związków potencjalnie szkodliwych dla środowiska. Odgrywają one rolę w procesach transferu antybiotykooporności pomiędzy patogenami i bakteriami niechorobotwórczymi. Wykorzystując metodę wysokosprawnej chromatografii cieczowej (HPLC) wykazano obecność erytromycyny, sulfametoksazolu i trimetoprimu w miejskiej oczyszczalni ścieków w następujących stężeniach: dla erytromycyny < 20 ng L−1, N-acetylo-sulfametoksazolu 3349 ± 719 i 2933 ± 429 ng L−1, a trimetoprimu 400 ± 22 i 364 ± 60 ng L−1, odpowiednio: zimą i latem. Ponieważ antybiotykooporność bakteryjna może być stymulowana obecnością antybiotyków w środowisku, istnieje możliwość pojawienia się wielu szlaków opornościowych u bakterii narażonych na działanie tych związków. Dlatego też podjęto próbę detekcji wybranych genów oporności na badane chemioterapeutyki metodą łańcuchowej reakcji polimerazy (PCR). Obecność elementów genetycznych badano zarówno w szczepach bakteryjnych, u których udowodniono oporność na badany związek bakteriobójczy, jak i w próbce osadu czynnego, z którego te bakterie izolowano. Do badań wybrano najczęściej występujące geny oporności: dla erytromycyny erm i mef, dla sulfametoksazolu: sul1, sul2, sul3, a dla trimetoprimu dhfrA1 i dhfr14. Wykazano, że wartość minimalnego stężenia inhibitującego (MIC), nie koresponduje z obecnością większej liczby mechanizmów oporności. Większość szczepów opornych wykazywała tylko jeden z badanych mechanizmów oporności na antybiotyk niezależnie od wartości MIC. Potwierdzono również możliwość monitorowania obecności genów oporności na antybiotyki metodą PCR bezpośrednio w osadzie czynnym. Ze względu na ograniczona liczbę izolatów użytych w tym eksperymencie wyniki uzyskane w pracy powinny być traktowane jako wstęp do dalszych badań.
Rocznik
Strony
23--32
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • The Silesian University of Technology, Poland The Faculty of Environmental Engineering and Energy Environmental Biotechnology Department
autor
  • The Silesian University of Technology, Poland The Faculty of Environmental Engineering and Energy Environmental Biotechnology Department
autor
  • The Silesian University of Technology, Poland The Faculty of Environmental Engineering and Energy Environmental Biotechnology Department
autor
  • The Silesian University of Technology, Poland The Faculty of Environmental Engineering and Energy Environmental Biotechnology Department
autor
  • The Silesian University of Technology, Poland The Faculty of Environmental Engineering and Energy Environmental Biotechnology Department
autor
  • The Silesian University of Technology, Poland The Faculty of Environmental Engineering and Energy Environmental Biotechnology Department
  • The Silesian University of Technology, Poland The Faculty of Environmental Engineering and Energy Environmental Biotechnology Department
Bibliografia
  • [1] Arthur, M., Molinas, C., Mabilat, C. & Courvalin, P. (1990). Detection of erythromycin resistance by the polymerase chain reaction using primers in conserved regions of erm rRNA methylase genes, Antimicrobial Agents Chemotherapy, 34, pp. 2024–2026.
  • [2] Bley, C., Linden, M. & Reinert, R.R. (2011). Mef(A) is the predominant macrolide resistance determinant in Streptococcus pneumoniae and Streptococcus pyogenes, International Journal of Antimicrobial Agents, 37, pp. 425–431.
  • [3] Brisson-Nöel, A., Arthur, M. & Courvalin, P. (1988). Evidence for natural gene transfer from gram-positive cocci to Escherichia coli, Journal of Bacteriology, 170, pp. 1739–1745.
  • [4] Brolund, A., Sundqvist, M., Kahlmeter, G. & Grape, M. (2010). Molecular characterization of trimethoprim resistance in Escherichia coli and Klebsiella pneumonia during a two year intervention on trimethoprim use, PLoS ONE 16 e9233. DOI: 10.1371/journal.pone.0009233.
  • [5] Dworniczek, E., Mróz, E., Skała, J., Przondo-Mordarska, A., Goj, A. & Bortniczuk, M. (2007). Trimethoprim resistance in Escherichia coli strains isolated from patients with urinary tract infection in 1989–1994, Advances in Clinical and Experimental Medicine, 16, pp. 35–42.
  • [6] Forster, S., Snape, J. R., Lappin-Scott, H. M. & Porter, J. (2002). Simultaneous fluorescent Gram staining and activity assessment of activated sludge bacteria, Applied and Environmental Microbiology, 68, pp. 4772–4779.
  • [7] Goebel, A., McArdell, C.S., Stuer, M.J. & Giger, W. (2004). Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry, Analitycal Chemistry, 76, pp. 4756–4764.
  • [8] Grape, M., Sundström, L. & Kronvall, G. (2003) Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources, Journal of Antimicrobial Chemotherapy, 52, pp. 1022–1024.
  • [9] Hijosa-Valsero, M., Fink, G., Schluesener, M.P., Sidrach-Cardona, R., Martín-Villacorta, J., Ternes, T. & Bécares, E. (2011). Removal of antibiotics from urban wastewater by constructed wetland optimization, Chemosphere, 83, pp. 713–719.
  • [10] Hoa, P.T., Nonaka, L., Vie, P.H. & Suzuki, S. (2008). Detection of the sul1, sul2, and sul3 genes in sulfonamide – resistant bacteria from wastewater and shrimp pond of North Vietnam, Science of the Total Environment, 405, pp. 377–384.
  • [11] Hoek, A.H., Scholtens, I.M., Cloeckaert, A. & Aarts, H.J. (2005) Detection of antibiotic resistance genes in different Salmonella serovars by oligonucleotide microarray analysis, Journal of Microbiological Methods, 62, pp. 13–23.
  • [12] Huovinen, P. (2001). Resistance to trimethoprim – sulfamethoxazole, Clinical Infectious Diseases, 32, pp. 1608–1614.
  • [13] Huovinen, P., Sundström, L., Swedberg, G. & Sköld, O. (1995). Trimethoprim and sulfonamide resistance, Antimicrobial Agents Chemotherapy, 39, pp. 279–289.
  • [14] Kümmerer, K. (2009). Antibiotics in the aquatic environment, Chemosphere, 75, pp. 417–434.
  • [15] Martin, S., Garvin, C.G., McBurney, C.R. & Sahloff, E.G. (2001). The activity of 14-hydroxy clarithromycin, alone and in combination with clarithromycin, against penicillin – and erythromycin – resistant Streptococcus pneumonia, Journal of Antimicrobial Chemotherapy, 47, pp. 581–587.
  • [16] Matsuoka, M., Inoue, M., Endo, Y. & Nakajima, Y. (2003). Characteristic expression of three genes, msr(A), mph(C) and erm(Y) that confer resistance to macrolide antibiotics on Staphylococcus aureus, FEMS Microbiology Letters, 220, pp. 287–293.
  • [17] Muyzer, G., De Waal, E.C. & Uitierlnden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Applied and Environmental Microbiology, 59, pp. 695–700.
  • [18] Nguyen, M.C.P., Woerther, P.-L., Bouvet, M., Andremont, A., Leclercq, R. & Canu, A. (2009). Escherichia coli as reservoir for macrolide resistance genes, Emerging Infectious Diseases, 15, pp. 1648–1651.
  • [19] Oliver, J.D. (2010). Recent findings on the viable but nonculturable state in pathogenic bacteria, FEMS Microbiology Reviews, 34, pp. 415–425.
  • [20] Perreten, V. & Boerlin, P.A. (2003). New sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland, Antimicrobial Agents and Chemotherapy, 47, pp. 1169–1172.
  • [21] Rahube, T.O. & Yost, C.K. (2010) Antibiotic resistance plasmids in wastewater treatment plants and their possible dissemination into the environment, African Journal of Biotechnology. 54, pp. 9183–9190.
  • [22] Schluesener, M.P., Spiteller, M. & Bester, K. (2003). Determination of antibiotics from soil by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry, Journal of Chromatography, 1003, pp. 21–28.
  • [23] Schönberg-Norio, D., Hänninen, M.-L., Katila, M.-L., Kaukoranta, S.-S., Koskela, M., Eerola, E., Uksila, J., Pajarre, S. & Rautelin, H. (2006). Activities of telithromycin, erythromycin, fluoroquinolones, and doxycycline against Campylobacter strains isolated from Finnish subjects, Antimicrobial Agents Chemotherapy, 50, pp. 1086–1088.
  • [24] Silva, J., Castillo, G., Callejas, L., López, H. & Olmos, J. (2006). Frequency of transferable multiple antibiotic resistance among coliform bacteria isolated from a treated sewage effluent in Antofagasta, Chile, Electronic Journal of Biotechnology, 5, pp. 533–540.
  • [25] Sköld, O. (2001). Resistance to trimethoprim and sulfonamides, Veterinary Research, 32, pp. 261–273.
  • [26] Soufi, L., Sáenz, Y., Vinué, L., Abbassi, M.S., Ruiz, E., Zarazaga, M., Hassen, A.B., Hammami, S. & Torres, C. (2010). Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons, International Journal of Food Microbiology, 144, pp. 497–502.
  • [27] Sutcliffe, J., Grebe, T., Tait-Kamradt, A. & Wondrack, L. (1996). Detection of erythromycin-resistant determinants by PCR, Antimicrobial Agents Chemotherapy, 40, pp. 2562–2566.
  • [28] Szczepanowski, R., Krahn, I., Linke, B., Goesmann, A., Pühler, A. & Schlüter, A. (2004). Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system, Microbiology, 150, pp. 3613–3630.
  • [29] Toleman, M.A., Bennett, P.M., Bennett, D.M., Jones, R.N. & Walsh, T.R. (2007). Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes, Emerging Infectious Diseases, 13, pp. 559–565.
  • [30] Weisblum, B. (1995). Erythromycin resistance by ribosome modification, Antimicrobial Agents and Chemiotherapy, 39, pp. 577–585.
  • [31] Wise, R. (2002). Antimicrobial resistance: Priorities for action, Journal of Antimicrobial Chemotherapy, 49, pp. 585–586.
  • [32] Ziembińska, A., Ciesielski, S. & Miksch, K. (2009). Ammonia oxidizing bacteria community in activated sludge monitored by denaturing gradient gel electrophoresis (DGGE), Journal of General and Applied Microbiology, 55, pp. 373–380.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1520903e-535c-4d7f-b9cc-550f720999ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.