PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Preparation and preliminary in vivo studies of resorbable polymer modified with allogenic bone chips for guided bone regeneration and orthopedic implants

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composites made of resorbable polylactide modified with bone powder are part of the current search for implantable materials endowed with advantageous biomechanical functions, which make them suitable for orthopedics and traumatology applications. The bone additive containing active bone morphogenetic proteins (BMPs) and calcium phosphates introduced into the polymer matrix is to grant the implant with a biological activity. Subsequently, the resorbable matrix should get replaced with bone tissue. In order to avoid losing the osteoinductive properties of the designed material, it should be processed at low temperatures via physicochemical methods. This paper is devoted to the preparation and optimization of the composite production method suitable for biodegradable polymers and morphogenetic proteins along with the assessment of biocompatibility and biological properties of obtained materials. The tape-casting method was successfully applied. Resorbable polymer (medical poly-L-lactide, Purasorb PL38 by Purac) with 15 wt% of human bone powder (from tissue bank) were used to fabricate PLA-CP/BMPs composite implants. They were tested in in vivo studies that were performed in rabbit bone tissues. The results show a high biocompatibility of the material and good osteointegration with bone tissue.
Rocznik
Strony
13--19
Opis fizyczny
Bibliogr. 23 poz., tab., zdj.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. Mickiewicza 30, 30-059 Kraków, Poland
  • University of Life Sciences in Lublin, Faculty of Veterinary Medicine, Department and Clinic of Veterinary Surgery, ul. Głęboka 30, 20-612 Lublin, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Chair and Clinic of Orthopaedics and Traumatology, Medical University of Warsaw, ul. W. Lindleya 4, 02-005 Warsaw, Poland
autor
  • Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland
  • Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Huntley R., Jensen E., Gopalakrishnan R., Mansky K.C.: Bone morphogenetic proteins: Their role in regulating osteoclast differentiation. Bone Rep. 10 (2019) 100207.
  • [2] Guo L., Min S., Su Y. et al.: Collagen sponge functionalized with chimeric anti-BMP-2 monoclonal antibody mediates repair of nonunion tibia defects in a nonhuman primate model: An exploratory study. Journal of Biomaterials Applications 32 (2017) 425-432.
  • [3] Matsumoto G., Ueda T., Sugita Y.T.: Polyhedral microcrystals encapsulating bone morphogenetic protein 2 improve healing in the alveolar ridge. Journal of Biomaterials Applications 30 (2015) 193-200.
  • [4] Chłopek J., Kmita G.: Non-Metallic Composite Materials for Bone Surgery. Engineering Transactions 51 (2003) 307-323.
  • [5] Nair L.S., Cato T.L.: Biodegradable polymers as biomaterials. Progress in Polymer Science 32 (2007) 762-798.
  • [6] Pillai C.K., Sharma C.P.: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability and Performance. Journal of Biomaterials Applications 25 (2010) 291-366.
  • [7] Parra M., Moya M.P., Rebolledo C., Haidar Z.S., Alister J.P., Olate S.: PLA/PGA and its co-polymers in alveolar bone regeneration. A systematic review. Int. J. Odontostomatol. 13(3) (2019) 258-265.
  • [8] Dedukh N.V., Makarov V.B., Pavlov A.D.: Polylactide-based biomaterial and its use as bone implants (analytical literature review). Pain, Joints, Spine 9 (2019) 28-35.
  • [9] Szaraniec B.: Durability of Biodegradable Internal Fixation Plates. Materials Science Forum 730-732 (2013) 15-19.
  • [10] Gryń K., Szaraniec B., Morawska-Chochol A., Chłopek J.: Mechanical characterization of multifunctional resorbable composite plate for osteosynthesis. Engineering of Biomaterials 18 (2015) 22-33.
  • [11] Backes E.H., de Nóbile Pires L., Selistre-de-Araujo H.S., Costa L.C., Passador F.R., Pessan L.A.: Development and characterization of printable PLA/β-TCP bioactive composites for bone tissue applications. J Appl Polym Sci. 138 (2020) 49759.
  • [12] Lademann F., Hofbauer L.C., Rauner M.: The Bone Morphogenetic Protein Pathway: The Osteoclastic Perspective. Front. Cell Dev. Biol. 8 (2020) 586031.
  • [13] Nauth A., Ristiniemi J., McKee M.D., Schemitsch E.H.: Bone morphogenetic proteins in open fractures: past, present, and future. Injury 40 (2009) 27-31.
  • [14] Fialho S.L., da Silva Cunha A.: Manufacturing Techniques of Biodegradable Implants Intended for Intraocular Application. Drug Delivery 12 (2005) 109-116.
  • [15] de Melo L.P., Salmoria G.V., Fancello E.A., de Mello Roesler C.R.: Influence of Processing Conditions on the Mechanical Behavior and Morphology of Injection Molded Poly(lactic-co-glycolic acid) International Journal of Biomaterials 85 (2017) 6435076.
  • [16] Kang Q.K., LaBreck J.C., Gruber H.E., An Y.H.: Histological Techniques for Decalcified Bone and Cartilage. In: An Y.H., Martin K.L. (eds) Handbook of Histology Methods for Bone and Cartilage. (2003) Humana Press, Totowa, NJ.
  • [17] Dai J., Li L., Jiang C., Wang C., Chen H., Chai Y.: Bone Morphogenetic Protein for the Healing of Tibial Fracture: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE (2015) 10.
  • [18] Kanakaris N.K., Petsatodis G., Tagil M., Giannoudis P.V.: Is there a role for bone morphogenetic proteins in osteoporotic fractures? Injury 40 (2009) 21-26.
  • [19] Gryń K.: Long-term mechanical testing of multifunctional composite fixation miniplates. Engineering of Biomaterials 157 (2020) 20-25.
  • [20] Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y.: Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 23 (2019) 1-11.
  • [21] Katagiri T., Watabe T.: Bone Morphogenetic Proteins. Cold Spring Harb Perspect Biol. 8 Published (2016) 021899.
  • [22] Buser Z., Brodke D.S., Youssef J.A., et al.: Allograft Versus Demineralized Bone Matrix in Instrumented and Noninstrumented Lumbar Fusion: A Systematic Review. Global Spine Journal 8 (2018) 396-412.
  • [23] Fernandez de Grado G., Keller L., Idoux-Gillet Y., et al.: Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 9 (2018) 1-18.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-151ff7a9-bb12-4e6a-a9f7-7a360a768c5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.