PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing civilian armored vehicle design with quality: A case study on lightweight ballistic protection using the DfA2 methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The global demand for ballistic protection systems within civilian armored vehicles (CAVs), particularly in high-security environments, necessitates focused research. Given the paucity of literature addressing the ballistic enhancements design of non-military passenger vehicles, this work concerns the analysis of quality assurance during the armoring process of a standard civilian passenger vehicle while maintaining its original functionality and consumer guarantees. To achieve these metrics, the article presents the Design for Assembly and Armoring (DfA2) methodology in a case study, examining the protection of a front door system of a worldwide compact sport utility vehicle (SUV). This systematic framework optimizes lightweight ballistic systems for CAVs through empirical evaluations and engineering principles. Integrating manufacturing acumen with Design for Excellence (DfX) principles, quality assurance protocols, automotive performance criteria, and ballistic defense requirements, DfA2 addresses the development and integration of armoring solutions with product and process quality in CAVs. Through field research, this study demonstrates the efficacy of the proposed method in refining armoring operations, minimizing armor material mass, and reducing production and design expenditures. Consequently, the findings of this case study with the adoption of DfA2 suggest that the method can be replicated or adapted for diverse vehicle categories, encompassing hatchbacks, notchbacks, SUVs, and commercial vehicles. This research sought to standardize vehicle armoring production, ensuring rigorous quality control while preserving original vehicle functionalities and consumer warranties.
Rocznik
Strony
190--200
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Mechanical Engineering Department, Polytechnic School of the University of Sao Paulo, Av. Prof. Mello Moraes, 2231, ZIP 05508-030, Sao Paulo, SP, Brazil
  • Mechanical Engineering Department, Polytechnic School of the University of Sao Paulo, Av. Prof. Mello Moraes, 2231, ZIP 05508-030, Sao Paulo, SP, Brazil
Bibliografia
  • 1.Abuzied, H, Senbel, H., Awad, M., Abbas, A., 2019. A review of advances in design for disassembly with active disassembly applications. International Journal Engineering Science and Technology, 23(3), 618-624. DOI: 10.1016/j.jestch.2019.07.003
  • 2.ASTM. American Society for Testing Materials., 2023. ASTM E3113-23. Standard specification for ballistic-resistant vehicle door panels used by public safety agencies. DOI: 10.1520/E3113-23
  • 3.Bao, J.-W., Wang, Y.-W., An, R., Cheng, H.-W., Wang, F.-C., 2022. Investigation of the mechanical and ballistic properties of hybrid carbon/ aramid woven laminates. Defence Technology, 18(10), 1822-1833. DOI: 10.1016/j.dt.2021.09.009
  • 4.Baraldi, E. C, Kaminski, P. C., 2018. Reference model for the implementation of new assembly processes in the automotive sector. Cogent Engineering, 5(1),1482984. DOI: 10.1080/23311916.2018.1482984
  • 5.Benabdellah, A. C., Benghabrit, A., Bouhaddou, I., Benghabrit, O., 2020. Design for relevance concurrent engineering approach: integration of IATF 16949 requirements and design for X techniques. Research in Engineering Design 31, 323-351. DOI: 10.1007/s00163-020-00339-4
  • 6.Boothroyd, G. 1994. Product design for manufacture and assembly. Computer-Aided Design, 26(7), 505-520. DOI: 10.1016/0010-4485(94)90082-5
  • 7.Boothroyd, G., Dewhurst, P., Knight, W. A., 2010. Product Design for Manufacture and Assembly. CRC Press, 3rd Edition. Boca Raton, USA. DOI: 10.1201/9781420089288
  • 8.BSI. British Standards Institution., 2018. PAS [Publicly Available Specification] 300:2018. Civilian armoured vehicle - Test methods for ballistic and blast protection. England.
  • 9.Candido, G. M., 2024. DfA2, Design for Assembly and Armoring, as the methodology for the manufacturing process of civil armored vehicles. Doctor Thesis in Mechanical Engineering, Polytechnic School, University of Sao Paulo, Brazil, 208 p. DOI: 10.11606/T.3.2024.tde-22112024-083125
  • 10.Candido, G. M., Kaminski, P. C., 2023. Civilian armored vehicle operations in Brazil - challenges and production processes improvements: a qualitative survey. Production Engineering Archives, 29(2), 128-139. DOI: 10.30657/pea.2023.29.15
  • 11.Candido, G. M., Kaminski, P. C., Medeiros, M. A., Araujo, A. G. L., 2022. Design for Excellence (DfX) in vehicle armoring operations: improvements and speed up a systematic literature review. Product, Management & Development, 20(1). DOI: 10.4322/pmd.2022.017
  • 12.Chami, A., Benabbou, R., Taleb, M., Rais, Z., El Haji, M., 2021. Analysis of survey data on corrosion in the automotive industry, Materials Today Proceedings, 45, 7636-7642. DOI: 10.1016/j.matpr.2021.03.113
  • 13.Dagman, A., Söderberg, R., 2012. Current state of the art on repair, maintenance and serviceability in Swedish automotive industry - a virtual product realization approach. In: Design for Innovative Value Towards a Sustainable Society. Springer, Dordrecht. DOI: 10.1007/978-94-007-3010-6_75
  • 14.Davies, G., 2012. Materials for automobile bodies, Elsevier, 1st Edition, Great Britain.
  • 15.De Fazio, F., Bakker, C., Flipsen, B., Balkenende, R., 2021. The Disassembly Map: A new method to enhance design for product repairability. Journal of Cleaner Production, 320(128552). DOI: 10.1016/j.jclepro.2021.128552
  • 16.Dewhurst, P., Abbatiello, N. 1996. Design for Service, In: Huang, G. Q. (eds) Design for X. Springer, Dordrecht, 298-317. DOI: 10.1007/978-94-011-3985-4
  • 17.DoD. Department of Defense. 1985. NIJ Standard 0108.01 Ballistic Resistant Protective Materials. National Institute of Justice. USA.
  • 18.Du Bois, P., Chou, C. C., Fileta, B. B., Khalil, T. B., King, A. I., Mahmood, H. F., Merzt, H. J., Wismans, J., 2004. Vehicle Crashworthiness and Occupant Protection. American Iron Steel Institute. Southfield, Michigan, USA.
  • 19.Favi, C., M. Marconi, M. Germani, Mandolini, M., 2019. A design for disassembly tool oriented to mechatronic product manufacturing and recycling. Advanced Engineering Informatics, 39, 62-79. DOI: 10.1016/j.aei.2018.11.008
  • 20.Goicoechea, I., Fenollera, M., 2012. Quality Management in the Automotive Industry. DAAAM - Danube Adria Association for Automation & Manufacturing International Scientific Book, 51, 619-632, Vienna, Austria, 2012. DOI: 10.2507/daaam.scibook.2012.51
  • 21.Hąbek, P., Lavios, J.J., Grzywa, A., 2023. Lean Manufacturing Practices Assessment - Case Study of Automotive Company. Production Engineering Archives, 29 (3), 311-318. DOI: 10.30657/pea.2023.29.36
  • 22.Happian-Smith, J., 2002. An Introduction to Modern Vehicle Design. Reed Educational and Professional Publishing Ltd.: Oxford, UK.
  • 23.Hesse, M., Weber, C., 2012. Manufacturability and Validation Methods in Passenger Car Development - an Industrial Case Study, International Design Conference, Design. Croatia.
  • 24.Hirz, M., Dietrich, W., Gfrerrer, A., Lang, J., 2013. Integrated computer-aided design in automotive development. Springer Berlin 1st Edition, Heidelberg, Germany, 466 p. DOI: 10.1007/978-3-642-11940-8
  • 25.Hua, H., Li, Y., Wang, T., Dong, N., Li, W., Cao, J., 2023. Edge Computing with Artificial Intelligence: A Machine Learning Perspective. ACM Computing Surveys, 55(9), 1-35. DOI: 10.1145/3555802
  • 26.Huang, G. Q. 1996. Design for X-Concurrent engineering imperatives. Springer, Dordrecht 1st Edition. DOI: 10.1007/978-94-011-3985-4
  • 27.IATF. International Automotive Task Force., 2016. ISO/TS 16949 - Quality management system for organizations in the automotive industry. Genève.
  • 28.Juniani, A., Singgih, M., Karningsih, P., 2021. Design for Manufacturing, Assembly, and Reliability on Product Redesign: Literature Review and Research Direction. In: 2 nd Asia Pacific International Conference on Industrial Engineering and Operations Management. DOI: 10.46254/AP02.20210039
  • 29.Kaluza, A., Kleemann, S., Broch, F., Herrmann, C., Vietor, T., 2016. Analyzing Decision-making in Automotive Design towards Life Cycle Engineering for Hybrid Lightweight Components. Procedia CIRP, 50, 825- 830. DOI: 10.1016/j.procir.2016.05.029
  • 30.Knop, K., Gejdos, P., 2024. Prioritizing product quality problems using quality management tools. System Safety: Human - Technical Facility - Environment, 6 (1), 138-153. DOI: 10.2478/czoto-2024-0016
  • 31.Kuo, T. C., Huang, S. H., Zhang, H. C., 2001. Design for manufacture and design for ‘X’: concepts, applications, and perspectives. Computers & Industrial Engineering, 41(3), 241-260. DOI: 10.1016/S0360- 8352(01)00045-6
  • 32.Louda, P., 2007. Applications of thin coatings in automotive industry. Journal of Achievements in Materials and Manufacturing Engineering, 24 (1).
  • 33.Maltzman, R., Rembis, K. M., Donisi, M., Farley, F., Sanchez, R. C., Ho, A. Y., 2005. Design for Networks-The Ultimate Design for X. Bell Labs Technical Journal, 9(4), 5-23. DOI: 10.1002/bltj.20057
  • 34.Mayyas, A., Qattawi, A., Omar, M., Shan, D., 2012. Design for sustainability in automotive industry: A comprehensive review. Renewable and Sustainable Energy Reviews, 16(4), 1845-1862. DOI: 10.1016/j.rser.2012.01.012
  • 35.Mesa, J. A., 2023. Design for circularity and durability: an integrated approach from DFX guidelines. Res Engineering Design, 34, 443-460. DOI:10.1007/s00163-023-00419-1
  • 36.Morris, A., Halpern, M., Setchi, R., Prickett, P., 2015. Assessing the challenges of managing product design change through-life, Journal of Engineering Design, 27, 25-49. DOI: 10.1080/09544828.2015.1085498.
  • 37.Naiju, C. D., 2021. DFMA for product designers: A review. Materials Today: Proceedings, 46 (17), 7473-7478. DOI: 10.1016/j.matpr.2021.01.134
  • 38.Pacana, A., Czerwińska, K., 2020. Improving the quality level in the automotive industry. Production Engineering Archives, 26, 162-166. DOI: 10.30657/pea.2020.26.29
  • 39.Pastor, L. R., Mesa, J. A., 2023. Proposing an integrated indicator to measure product repairability. Journal of Cleaner Production, 395(136434). DOI: 10.1016/j.jclepro.2023.136434
  • 40.Pellegrini, F., 2020. An armored truck cab design - case study: investigation of selected steel grades. KTH Royal Institute of Technology, School of Industrial Engineering and Management, Degree Project in Materials Science and Engineering, Stockholm, Sweden, 162 p.
  • 41.Rosenqvist, M., L. Lindkvist, K. Wärmefjord, Söderberg, R., 2024. Simulation of variation for manual assembly when mis-constraining occurs. Journal of Engineering Design, 35(1), 54-88. DOI: 10.1080/09544828.2023.2290925
  • 42.Sanches Jr., L. M., M. S. Filho and G. F. Batalha., 2008. Automotive bodyin-white dimensional stability through pre-control application in the subassembly process. Journal of Achievements in Materials and Manufacturing Engineering 31(2).
  • 43.Sarvankar, S. G., Yewale, S. N., 2019. Additive Manufacturing in Automobile Industry. IJRAME, International Journal of Research in Aeronautical and Mechanical Engineering 7(4), 01-10.
  • 44.Sassaneli, C., Urbinati, A., Rosa, P., Chiaroni, D., Terzi, S., 2020. Addressing circular economy through design for X approaches: A systematic literature review. Computers in Industry, 120 (103245). DOI: 10.1016/j.compind.2020.103245
  • 45.Shim, G.-I., Kim, S.-H., Ahn, D.-L., Park, J.-K, Jin, D.-H., Chung D.-T., Choi, S.-Y., 2016. Experimental and numerical evaluation of transparent bulletproof material for enhanced impact-energy absorption using strengthened-glass/polymer composite. Composites Part B: Engineering, 97, 150-161. DOI: 10.1016/j.compositesb.2016.04.078
  • 46.Suresh, P., Ramabalan, S., Natarajan, U., 2015. Integration of DFE and DFMA for the sustainable development of an automotive component. International Journal of Sustainable Engineering, 9(2), 107-118. DOI: 10.1080/19397038.2015.1096313
  • 47.Stylidis, K., Wickman, C., Söderberg, R., 2020. Perceived quality of products: a framework and attributes ranking method. Journal of Engineering Design, 31 (1), 37-67. DOI: 10.1080/09544828.2019.1669769
  • 48.U.S. Department of Energy, Energy Efficiency & Renewable Energy, Vehicle Technologies Office., 2010. Fact #621: Gross vehicle weight vs. empty vehicle weight. https://www.energy.gov/eere/vehicles/fact-621-may-3- 2010-gross-vehicle-weight-vs-empty-vehicle-weight.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-151c97b0-3273-4c5d-9e6a-9b47623e2e47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.