PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the angular position of a two–wheeled balancing robot using a real IMU with selected filters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A low–cost measurement system using filtering of measurements for two–wheeled balancing robot stabilisation purposes has been addressed in this paper. In particular, a measurement system based on gyroscope, accelerometer, and encoder has been considered. The measurements have been corrected for deterministic disturbances and then filtered with Kalman, a–b type, and complementary filters. A quantitative assessment of selected filters has been given. As a result, the complete structure of a measurement system has been obtained. The performance of the proposed measurement system has been validated experimentally by using a dedicated research rig.
Rocznik
Strony
art. no. e140518
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Z. Li, C. Yang, and L. Fan, Advanced control of wheeled inverted pendulum systems. London, UK: Springer-Verlag London, 2013.
  • [2] R.P.M. Chan, K.A. Stol, and C.R. Halkyard, “Review of modelling and control of two-wheeled robots,” Annu. Rev. Control, vol. 37, no. 1, pp. 89–103, 2013, doi: 10.1016/j.arcontrol.2013.03.00.
  • [3] D. Pratama, E.H. Binugroho, and F. Ardilla, “Movement control of two wheels balancing robot using cascaded PID controller,” in Proceedings of 2015 International Electronics Symposium (IES), 2015, pp. 94–99, doi: 10.1109/ELECSYM.2015.7380821.
  • [4] Y. Zhuang, Z. Hu, and Y. Yao, “Two-wheeled self-balancing robot dynamic model and controller design,” in Proceedings of the 11th World Congress on Intelligent Control and Automation, 2014, pp. 1935–1939, doi: 10.1109/WCICA.2014.7053016.
  • [5] M.S. Mahmoud and M.T. Nasir, “Robust control design of wheeled inverted pendulum sssistant robot,” IEEE-CAA J. Automatica Sin., vol. 4, no. 4, pp. 628–638, 2017, doi: 10.1109/JAS.2017.7510613.
  • [6] K. Andrzejewski, M. Czyżniewski, M. Zielonka, R. Łangowski, and T. Zubowicz, “A comprehensive approach to double inverted pendulum modelling,” Arch. Control Sci., vol. 29, no. 3, pp. 459–483, 2019, doi: 10.24425/acs.2019.130201.
  • [7] M. Waszak and R. Łangowski, “An automatic self-tuning control system design for an inverted pendulum,” IEEE Access, vol. 8, pp. 26 726–26 738, 2020, doi: 10.1109/ACCESS.2020.2971788.
  • [8] O. Saleem and K. Mahmood-Ul-Hasan, “Indirect adaptive state-feedback control of rotary inverted pendulum using self-mutating hyperbolic-functions for online cost variation,” IEEE Access, vol. 8, pp. 91 236–91 247, 2020, doi: 10.1109/ACCESS.2020.2994830.
  • [9] A. Jain, A. Sharma, V. Jately, B. Azzopardi, and S. Choudhury, “Real-time swing-up control of non-linear inverted pendulum using Lyapunov based optimized fuzzy logic control,” IEEE Access, vol. 9, pp. 50 715–50 726, 2021, doi: 10.1109/ACCESS.2021.3058645.
  • [10] A. Kharola, P. Patil, S. Raiwani, and D. Rajput, “A comparison study for control and stabilisation of inverted pendulum on inclined surface (IPIS) using PID and fuzzy controllers,” Perspect. Sci., vol. 8, pp. 187–190, 2016, doi: 10.1016/j.pisc.2016.03.016.
  • [11] P. Seekhao, K. Tungpimolrut, and M. Parnichkun, “Development and control of a bicycle robot based on steering and pendulum balancing,” Mechatronics, vol. 69, 2020, doi: 10.1016/j.mechatronics.2020.102386.
  • [12] M. Nowicki, W. Respondek, J. Piasek, and K. Kozłowski, “Geometry and flatness of m-crane systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 893–903, 2019, doi: 10.24425/bpasts.2019.130872.
  • [13] J. Rodriguez-Maldonado, “Estimation of angular velocity and acceleration with Kalman filter, based on position measurement only,” Measurement, vol. 145, pp. 130–136, 2019, doi: 10.1016/j.measurement.2019.05.043.
  • [14] X. Zhao, L. Dou, Z. Su, and N. Liu, “Study of the navigation method for a snake robot based on the kinematics model with MEMS IMU,” Sensors, vol. 18, no. 3, pp. 879–902, 2018, doi: 10.3390/s1803087.
  • [15] R. Łangowski and M.A. Brdys, “An interval estimator for chlorine monitoring in drinking water distribution systems under uncertain system dynamics, inputs and chlorine concentration measurement errors,” Int. J. Appl. Math. Comput. Sci., vol. 27, no. 2, pp. 309–322, 2017, doi: 10.1515/amcs-2017-0022.
  • [16] A. Witkowska, K. Armiński, T. Zubowicz, F. Ossowski, and R. Śmierzchalski, “Autonomous ship utility model parameter estimation utilising extended Kalman filter,” in Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, A. Bartoszewicz, J. Kabzi ́nnski, and J. Kacprzyk, Eds., Springer, Cham, 2020, vol. 1196, pp. 1531–1542, doi: 10.1007/978-3-030-50936-1_127.
  • [17] J.E. Bortz, “A new mathematical formulation for strapdown inertial navigation,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-7, no. 1, pp. 61–66, 1971, doi: 10.1109/TAES.1971.310252.
  • [18] M.B. Ignagni, “Optimal strapdown attitude integration algorithms,” J. Guid. Control Dyn., vol. 13, no. 2, pp. 363–369, 1990, doi: 10.2514/3.20558.
  • [19] B. Barshan and H.F. Durrant-Whyte, “Inertial navigation systems for mobile robots,” IEEE Trans. Aerosp. Electron. Syst., vol. 11, no. 3, pp. 328–342, 1995, doi: 10.1109/70.388775.
  • [20] L. Ojeda and J. Borenstein, “FLEXnav: fuzzy logic expert rule-based position estimation for mobile robots on rugged terrain,” in Proceedings of 2002 IEEE International Conference on Robotics and Automation, 2002, pp. 317–322, doi: 10.1109/ROBOT.2002.1013380.
  • [21] D. Titterton and J. Weston, Strapdown inertial navigation technology, 2nd edition. Stevenage, UK: Institution of Engineering and Technology, 2004.
  • [22] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE, vol. 86, no. 8, pp. 1640–1659, 1998, doi: 10.1109/5.704269.
  • [23] S.O.H. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic sensor arrays,” Report X-io and University of Bristol, 2010, pp. 113–118. [Online]. Available: https://www.samba.org/tridge/UAV/madgwick_internal_report.pdf.
  • [24] J. Vaganay, M.J. Aldon, and A. Fournier, “Mobile robot attitude estimation by fusion of inertial data,” in Proceedings of IEEE International Conference on Robotics and Automation, 1993, pp. 277–282, doi: 10.1109/ROBOT.1993.291995.
  • [25] M. Park, “Error analysis and stochastic modeling of MEMS based inertial sensors for land vehicle navigation applications,” Master’s thesis, University of Calgary, Calgary, Canada, 2004.
  • [26] M. Park and Y. Gao, “Error and performance analysis of MEMS-based inertial sensors with a low-cost GPS receiver,” Sensors, vol. 8, no. 4, pp. 2240–2261, 2008, doi: 10.3390/s8042240.
  • [27] M. Park and Y. Gao, “Error analysis and stochastic modeling of low-cost MEMS accelerometer,” J. Intell. Robot. Syst., vol. 46, pp. 27–41, 2006, doi: 10.1007/s10846-006-9037-5.
  • [28] S. Nassar, K.P. Schwarz, N. El-Sheimy, and A. Noureldin, “Modeling inertial sensor errors using autoregressive (AR) models,” Navigation, vol. 51, no. 4, pp. 259–268, 2004, doi: 10.1002/j.2161-4296.2004.tb00357.x.
  • [29] R.E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng.-Trans. ASME, vol. 82, pp. 35–45, 1960, doi: 10.1115/1.3662552.
  • [30] W. Premerlani and P. Bizard, “Direction cosine matrix IMU: Theory,” 2009. [Online]. Available: https://wiki.paparazziuav.org/w/images/e/e5/DCMDraft2.pdf.
  • [31] R. Mahony, T. Hamel, and J.M. Pflimlin, “Complementary filter design on the special orthogonal group SO(3),” in Proceedings of 44th IEEE Conference on Decision and Control, and the European Control Conference, 2005, pp. 1477–1484, doi: 10.1109/CDC.2005.1582367.
  • [32] K. Saho and M. Masugi, “Performance analysis of α-β -γ tracking filters using position and velocity measurements,” Eurasip. J. Adv. Signal. Process., vol. 2015, p. 35, 2015, doi: 10.1186/s13634-015-0220-3.
  • [33] G. Baldwin, R. Mahony, J. Trumpf, T. Hamel, and T. Cheviron, “Complementary filter design on the special Euclidean group SO(3),” in Proceedings of 2007 European Control Conference, 2007, pp. 3763–3770, doi: 10.23919/ecc.2007.7068746.
  • [34] R. Mahony, T. Hamel, P. Morin, and E. Malis, “Nonlinear complementary filters on the special linear group,” Int. J. Control, vol. 85, no. 10, pp. 1557–1573, 2012, doi: 10.1080/00207179.2012.693951.
  • [35] H. Lee and S. Jung, “Balancing and navigation control of a mobile inverted pendulum robotusing sensor fusion of low cost sensors,” Mechatronics, vol. 22, pp. 95–105, 2012, doi: 10.1016/j.mechatronics.2011.11.011.
  • [36] C. Zych, A. Wrońska-Zych, J. Dudczyk, and A. Kawalec, “A correction in feedback loop applied to two-axis gimbal stabilization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 1, pp. 217–219, 2015, doi: 10.1515/bpasts-2015-0025.
  • [37] I. Skog and P. Handel, “Calibration of a MEMS inertial measurement unit,” in Proceedings of 18th IMEKO World Congress 2006: Metrology for a Sustainable Development, 2006, pp. 1445–1450. [Online]. Available: https://www.imeko.org/publications/wc-2006/PWC-2006-TC3-017u.pdf.
  • [38] F. Jiancheng and L. Jianli, “Integrated model and compensation of thermal errors of silicon microelectromechanical gyroscope,” IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 2923–2930, 2009, doi: 10.1109/TIM.2009.2016780.
  • [39] R. Ramalingam, G. Anitha, and J. Shanmugam, “Microelectromechnical systems inertial measurement unit error modelling and error analysis for low-cost strapdown inertial navigation system,” Def. Sci. J., vol. 59, pp. 650–658, 2009, doi: 10.14429/dsj.59.1571.
  • [40] D. Lee, S. Lee, S. Park, and S. Ko, “Test and error parameter estimation for MEMS - based low cost IMU calibration,” Int. J. Precis. Eng. Manuf., vol. 12, no. 4, pp. 597–603, 2011, doi: 10.1007/s12541-011-0077-9.
  • [41] Z. Mohammed, I.A.M. Elfadel, and M. Rasras, “Monolithic multi degree of freedom (MDoF) capacitive MEMS accelerometers,” Micromachines, vol. 9, no. 11, pp. 602–622, 2018, doi: 10.3390/mi9110602.
  • [42] J.J. Allen et al., “Integrated micro-electro-mechanical sensor development for inertial applications,” in Proceedings of IEEE 1998 Position Location and Navigation Symposium, 1998, pp. 9–16, doi: 10.1109/PLANS.1998.669863.
  • [43] K. Laddach, M. Czy ̇zniewski, and R. Łangowski, “A selection of PID type controller settings via LQR approach for two-wheeled balancing robot,” in Proceedings of the 25th International Conference on Methods and Models in Automation and Robotics (MMAR), 2021, pp. 378–383, doi: 10.1109/MMAR49549.2021.9528471.
  • [44] A. Chhotray, M.K. Pradhan, K.K. Pandey, and D.R. Parhi, “Kinematic analysis of a two-wheeled self-balancing mobile robot,” in Proceedings of the International Conference on Signal, Networks, Computing, and Systems, 2016, pp. 87–93, doi: 10.1007/978-81-322-3589-7_9.
  • [45] R.P. Feynman, R.B. Leighton, and M.L. Sands, The Feynman lectures on physics. London, UK: Springer–Verlag London, 1963.
  • [46] I.I. Incze, A. Negrea, M. Imecs, and C. Szabó, “Incremental encoder based position and speed identification: modeling and simulation,” Acta Universitatis Sapientiae Electr. Mech. Eng., vol. 2, pp. 27–39, 2010. [Online]. Available: http://www.acta.sapientia.ro/acta-emeng/C2/emeng2-3.pdf.
  • [47] R. Grygiel, R. Bieda, and K. Wojciechowski, “Angles from gyroscope to complementary filter in IMU,” Prz. Elektrotechniczy, no. 9, pp. 217–224, 2014, doi: 10.12915/pe.2014.09.52.
  • [48] I. InvenSense, “MPU-6000 and MPU-6050 Product Specification Revision 3.4,” Accessed on: Apr. 22, 2021. [Online]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-151b95ed-59f7-44d2-a82b-c8098ce2d841
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.