PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morpho-Physiological and Biochemical Responses of Cymbopogan citratus and Asparagus officinalis L. to Waterlogging and Salinity Stress

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Salinity stress is an alarming issue causing a substantial reduction in crop productivity. Waterlogging also limits crop productivity and the extent of both these stresses is increasing due to climate change and global warming. This study investigated the response of Lemongrass and Asparagus grass under salinity stress and waterlogged conditions. The study was comprised of different treatments: control, salinity stress, waterlogged conditions and salinity stress + waterlogged conditions. The results revealed that salinity + waterlogging pressure negatively affected cymbopogan citratus and Asparagus officinalis. The physio-morphological, biochemical attributes, enzymatic antioxidants, and nutrient parameters showed a greater reduction under combined salinity and water waterlogged conditions. Waterlogging caused a marked decrease in root growth, leaves production and plant height of both grasses, compared to the control. Salinity stress also resulted in similar morphological modifications, albeit to a lesser extent. Physiological analysis showed a decline in chlorophyll content and RWC, indicating reduced photosynthetic capacity and water uptake efficiency in response to waterlogging and salinity. Electrolyte leakage, increased significantly under waterlogging and salinity stress, suggesting cellular damage and membrane disruption. C.citratus exhibited greater resilience to waterlogging and salinity compared to A. officinalis. Despite the adverse conditions, C. citratus maintained higher chlorophyll content, RWC, and lower electrolyte leakage, indicating better stress tolerance mechanisms. In conclusion, waterlogging and salinity induced significant morphophysiological modifications in both C. citratus and A. officinalis. However, C. citratus exhibited better tolerance to these stresses, suggesting its potential for cultivation in waterlogged and saline environments.
Słowa kluczowe
Rocznik
Strony
115--125
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Department of Botany, The Islamia University of Bahawalpur, Rabia Hall Rd, Punjab, Bahawalpur, Punjab 63100, Pakistan
autor
  • Department of Botany, The Islamia University of Bahawalpur, Rabia Hall Rd, Punjab, Bahawalpur, Punjab 63100, Pakistan
autor
  • Jilin Changfa Modern Agricultural Teachology Group Limited, Changchun, China
autor
  • Department of Botany, The Islamia University of Bahawalpur, Rabia Hall Rd, Punjab, Bahawalpur, Punjab 63100, Pakistan
  • Department of Botany, The Islamia University of Bahawalpur, Rabia Hall Rd, Punjab, Bahawalpur, Punjab 63100, Pakistan
autor
  • Schlool of Agriculture, Jilin Agricultural University, Changchun, 130117, China
  • Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
  • Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
  • Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
  • Central Laboratories, King Faisal University, PO Box 420, Al-Ahsa 31982, Saudi Arabia
Bibliografia
  • 1. Alkharabsheh H.M., Seleiman M.F., Hewedy O.A., Battaglia M.L., Jalal R.S., Alhammad B.A., Schillaci C., Ali N., Al-Doss A. 2021. Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy, 11(11), 2299.
  • 2. Aksoy S., Yildirim A., Gorji T., Hamzehpour N., Tanik A., Sertel E. 2022. Assessing the performance of machine learning algorithms for soil salinity mapping in Google Earth Engine platform using Sentinel-2A and Landsat-8 OLI data. Advances in Space Research, 69(2), 1072–1086.
  • 3. Beacham A.M., Hand P., Pink D.A., Monaghan J.M. 2017. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress. Journal of the Science of Food and Agriculture, 97(15), 5271–5277.
  • 4. Chandio N.H., Mallah Q.H., Anwar M.M. 2017. Evaluation of soil salinity and its impacts on agriculture: nexus of RBOD-III, Pakistan. Sindh University Research Journal, 49(3), 525–528.
  • 5. Dawid C., Hofmann T. 2012. Identification of sensory-active phytochemicals in asparagus (Asparagus officinalis L.). Journal of Agricultural and Food Chemistry, 60(48), 11877–11888.
  • 6. Döll S., Djalali FR., Zrenner R., Henze A., Witzel, K. 2021. Tissue-specific signatures of metabolites and proteins in asparagus roots and exudates. Horticulture Research, 8, 1–12.
  • 7. Fuller B.J. 2004. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters, 25(6), 375–388.
  • 8. Hopmans J.W., Qureshi A.S., Kisekka I., Munns R., Grattan S.R., Rengasamy P., Ben-Gal A., Assouline S., Javaux M., Minhas P.S., Raats P.A.C. 2021. Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 169, 1–191.
  • 9. Jamshidi J.B., Shekari F., Andalibi B., Fotovat R., Jafarian V., Dolatabadian A. 2023. The effects of salicylic acid and silicon on safflower seed yield, oil content, and fatty acids composition under salinity stress. Silicon, 1–14.
  • 10. Kamran M., Xie K., Sun J., Wang D., Shi C., Lu Y., Gu W., Xu P. 2020. Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). Ecotoxicology and Environmental Safety, 188, 109877.
  • 11. Kaur G., Singh G., Motavalli P.P., Nelson K.A., Orlowski J.M., Golden B.R. 2020. Impacts and management strategies for crop production in waterlogged or flooded soils: a review. Agronomy Journal, 112(3), 1475–1501.
  • 12. Lu S., Wang Z., Niu Y., Guo Z., Huang B. 2008. Antioxidant responses of radiation-induced dwarf mutants of bermudagrass to drought stress. Journal of the American Society for Horticultural Science, 133(3), 360–366.
  • 13. Mukhopadhyay R., Sarkar B., Jat H.S., Sharma P.C., Bolan N.S. 2021. Soil salinity under climate change: challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736.
  • 14. Mukarram M., Khan M.M.A., Zehra A., Petrik P., Kurjak D. 2022. Suffer or survive: Decoding salt-sensitivity of lemongrass and its implication on essential oil productivity. Frontiers in Plant Science, 13, 903954.
  • 15. Manvitha K., Bidya B. 2014. Review on pharmacological activity of Cymbopogon citratus. International Journal of Herbal Medicine, 6, 7–13.
  • 16. Noperi-Mosqueda L.C., López-Moreno F.J., Navarro-León E., Sánchez E., Blasco B., Moreno D.A., Soriano T., Ruiz J.M. 2020. Effects of asparagus decline on nutrients and phenolic compounds, spear quality, and allelopathy. Scientia Horticulturae, 261, 109029.
  • 17. Ruban A.V. 2009. Plants in light. Communication and Integration Biology, 2, 50–55
  • 18. Seleiman M.F., Ahmad A., Alshahrani T.S. 2023. Integrative effects of zinc nanoparticle and PGRs to mitigate salt stress in maize. Agronomy, 13(6), 1655.
  • 19. Striker G.G. 2012. Flooding stress on plants: anatomical, morphological and physiological responses. In-Tech-Open, London.
  • 20. Tzortzakis N.G., Economakis C.D. 2007. Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innovative Food Science and Emerging Technologies, 8(2), 253–258.
  • 21. Vardar-Ünlü G., Candan F., Sökmen A., Daferera D., Polissiou M., Sökmen M., Dönmez E., Tepe B. 2003. Antimicrobial and antioxidant activity of the essential oil and methanol extracts of Thymus pectinatus Fisch. et Mey. Var. pectinatus (Lamiaceae). Journal of Agricultural and Food Chemistry, 51(1), 63–67.
  • 22. Van-Veen H., Akman M., Jamar D.C., Vreugdenhil D., Kooiker M., Vantienderen P., Voesenek L.A., Schranz M.E., Sasidharan R. 2014. Group VII ethylene response factor diversification and regulation in four species from flood‐prone environments. Plant, Cell and Environment, 37(10), 2421–2432.
  • 23. Venâncio C., Wijewardene L., Ribeiro R., Lopes I. 2023. Combined effects of two abiotic stressors (salinity and temperature) on a laboratory-simulated population of Daphnia longispina. Hydrobiologia, 15, 1–12.
  • 24. Yan K., Zhao S., Cui M., Han G., Wen P. 2018. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. Plant Physiology and Biochemistry, 125, 239–246.
  • 25. Zhou W., Chen F., Meng Y., Chandrasekaran U., Luo X., Yang W., Shu K. 2020. Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiology and Biochemistry, 148, 228–236.
  • 26. Ziad M., Khalid S., Shah W., Naz A., Rehman Z. 2016. Impacts of water logging and salinity on crops production of village Adina, District Swabi. ARPN Journal of Agricultural and Biological Science, 11(6), 217–222.
  • 27. Zhang X., Han C., Cao Y. 2020. Transcriptomic and Physiological analyses reveal the dynamic response to salinity stress of the garden asparagus (Asparagus officinalis L.). Plant Molecular Biology Reports, 38, 613–627.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-151ac177-180d-47de-9107-ece19f03e966
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.