PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the Mechanical and Antibacterial Properties of Surface Modified Steel for Medical Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie właściwości mechanicznych i antybakteryjnych modyfikowanej powierzchniowo stali do zastosowań medycznych
Języki publikacji
EN
Abstrakty
EN
Various types of metal implants, both in Poland and worldwide, are mainly manufactured from stainless steel due to their biocompatibility, strength, and relatively low price. However, any such procedure involves the risk of peri-implant infection, stimulated, among other things, by the formation of a bacterial biofilm on the surface of the implant. In this paper, several methods of modifying the surface of steel for medical applications were proposed, such as mechanical polishing, electropolishing, sandblasting, and the application of a thin surface layer. This was followed by a series of physicochemical and biological tests. The results indicate that the titanium nitride coating improved corrosion resistance and reduced bacterial adhesion on the surface. No significant improvement in abrasion was observed, and the adhesion of the coating closely depended on the method of preparation.
PL
Implanty metalowe, zarówno w Polsce, jak i na świecie, produkowane są głównie ze stali nierdzewnej ze względu na jej biokompatybilność, wytrzymałość i stosunkowo niską cenę. Jednak każdy tego rodzaju zabieg wiąże się z ryzykiem powstania zakażenia okołowszczepowego, stymulowanego m.in. powstawaniem biofilmu bakteryjnego na powierzchni implantu. W pracy zaproponowano kilka metod modyfikacji powierzchni stali do zastosowań medycznych, takich jak polerowanie mechaniczne, elektropolerowanie, piaskowanie oraz nałożenie cienkiej warstwy powierzchniowej. Następnie przeprowadzono szereg badań fizykochemicznych i biologicznych. Wyniki wskazują, że powłoka azotku tytanu poprawiła odporność na korozję oraz ograniczyła adhezję bakterii na powierzchni. Nie zaobserwowano znaczącej poprawy ścieralności, a adhezja powłoki ściśle zależała od metody jej przygotowania.
Czasopismo
Rocznik
Tom
Strony
85--95
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Biomaterials and Medical Device Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosvelta 40 Street, 41-800 Zabrze, Poland
  • Department of Biomaterials and Medical Device Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosvelta 40 Street, 41-800 Zabrze, Poland
  • Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8 Street, 44-100, Gliwice, Poland
  • Department of Biomaterials and Medical Device Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosvelta 40 Street, 41-800 Zabrze, Poland
  • Department of Biomaterials and Medical Device Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosvelta 40 Street, 41-800 Zabrze, Poland.
Bibliografia
  • 1. Zhou J., Sun Y., Huang S., Sheng J., Li J., Agyenim-Boateng E.: Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy, Opt Laser. Technol., 2019, 109, pp. 263–269.
  • 2. Fojt J.: Ti–6Al–4V alloy surface modification for medical applications, Appl. Surf. Sci., 2012, 262, pp. 163–167.
  • 3. Shahryari A., Omanovic S., Szpunar J.A.: Materials Science and Engineering: C, 2008, Vol. 28, p. 94.
  • 4. Buhagiar J., Spiteri A., Sacco M., Sinagra E., Dong H.: Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburizing, Corros. Sci., 59 (2012), pp. 169–178.
  • 5. Multigner M., Frutos E., González-Carrasco J.L., Jiménez J.A., Marín P., Ibáñez J.: Influence of the sandblasting on the subsurface microstructure of 316LVM stainless steel: Implications on the magnetic and mechanical properties, Materials Science and Engineering: C, 2009, Volume 29, Issue 4, pp. 1357–1360.
  • 6. Sojitra, Prakash & Engineer, Chhaya & Kothwala, Devesh & Raval, Ankur & Kotadia, Haresh & Mehta, Girish: Electropolishing of 316LVM Stainless Steel Cardiovascular Stents: An Investigation of Material Removal, Surface Roughness and Corrosion Behaviour. Artif. Organs., 2010, 23, pp. 115–121.
  • 7. Taratuta A et. al.: Evaluation of the Physicochemical Properties of Passive Layers Produced on NiTi Alloys for Use in the Cardiovascular System. Innovations in Biomedical Engineering, zredagowane przez Marek Gzik et al., 2023, t. 409, s. 217–224, https://doi.org/10.1007/978-3-030-99112-8_22.
  • 8. Basiaga M. et al.: Adhesion of Staphylococcus Aureus on Various Biomaterial Surfaces. In: Gzik M., Paszenda Z., Piętka E., Tkacz E., Milewski K., Jurkojć J. (eds)m Innovations in Biomedical Engineering. Lecture Notes in Networks and Systems, 2023, vol 409. Springer, Cham.
  • 9. Lisoń J. et al.: Perspectives in Prevention of Biofilm for Medical Applications, Coatings, 2022, t. 12, 2, pp. 1–16, https://doi.org/10.3390/coatings12020197\
  • 10. Bociaga D., Sobczyk-Guzenda A., Szymanski W., Jedrzejczak A., Jastrzebska A., Olejnik A., Jastrzebski K.: Mechanical properties, chemical analysis and evaluation of antimicrobial response of Si-DLC coatings fabricated on AISI 316 LVM substrate by a multi-target DC-RF magnetron sputtering method for potential biomedical applications, Applied Surface Science, Volume 417, 2017, pp. 23–33.
  • 11. Łępicka M., Grądzka-Dahlke M., Pieniak D., Pasierbiewicz K., Niewczas A.: Effect of mechanical properties of substrate and coating on wear performance of TiN-or DLC-coated 316LVM stainless steel, Wear, 2017, 382, pp. 62–70.
  • 12. Rezaei A., Golenji R.B., Alipour F., Hadavi M.M., Mobasherpour I.: Hydroxyapatite/hydroxyapatitemagnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants, Ceramics International, 2020, 46(16), pp. 25374–25381.
  • 13. Ahmadi R., Izanloo S.: Development of HAp/GO/Ag coating on 316 LVM implant for medical applications, Journal of the mechanical behavior of biomedical materials, 2022, 126, p. 105075.
  • 14. Basiaga M., Staszuk M., Walke W., Tański T., Kajze, W.: Potentiostatic, potentiodynamic and impedance study of TiO2layers deposited of 316 LVM steel used for coronary stents, Archives of Metallurgy and Materials, 2016, 61(2A), pp. 821-824
  • 15. Kajzer W., Kajzer A., Grygiel-Pradelok M., Ziębowicz A., Ziębowicz B.: Evaluation of Physicochemical Properties of TiO2 Layer on AISI 316LVM Steel Intended for Urology, In Conference of Information Technologies in Biomedicine, pp. 385–398. Springer, Cham., 2016.
  • 16. Łępicka M., Grądzka-Dahlke M., Pieniak D., Pasierbiewicz K., Kryńska K., Niewczas A.: Tribological performance of titanium nitride coatings: A comparative study on TiN-coated stainless steel and titanium alloy, Wear, 2019, 422, pp. 68–80.
  • 17. Shukla K., Rane R., Alphonsa J., Maity P., Mukherjee S.: Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L, Surface and Coatings Technology, 2017, 324, pp. 167–174.
  • 18. Caballero-Gómez J., Caicedo J.C., Aperador W.: Tribological performance evaluation of coated steels with TiNbCN subjected to tribo-chemical wear in Ringer's solution, Revista mexicana de física, 2016, 62(2), pp. 113–123.
  • 19. Kayali Y.: The corrosion and wear behavior of TiN and TiAlN coated AISI 316L stainless steel, Prot. Met. Phys. Chem. Surf., 2014, 50, pp. 412–419.
  • 20. Smyth A., et al.: Influence of kinematics on the wear of a total ankle replacement, J. Biomech., 2017, 53, pp. 105–110.
  • 21. Fisher J., et al.: An in vitro study of the reduction in wear of metal-on-metal hip prostheses using surface-engineered femoral heads, Proc. Inst. Mech. Eng. Part H J. Eng. Med., 2002, 216, pp. 219–230.
  • 22. Zivic F., Babic M., Grujovic N., Mitrovic S., Adamovic D.: Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopedic AISI 316LVM stainless steel during reciprocating sliding, Wear, 2013, vol. 300, no. 1–2, pp. 65–77, doi: 10.1016/J.WEAR.2013.01.109.
  • 23. Maniscalco S. et al.: Low temperature carburised austenitic stainless steel for metal-on-metal tribological contact, Thin Solid Films, 2016, vol. 620, pp. 103–113.
  • 24. Moriarty T.F., Poulsson A.H.C., Rochford E.T.J., Richards R.G.: Bacterial adhesion and biomaterial surfaces, Compr. Biomater., 4 (2011), pp. 75–100.
  • 25. Bull S.J., Berasetegui E.G., An overview of the potential of quantitative coating adhesion measurement by scratch testing, Tribol Int, 2006, vol. 39, no. 2, pp. 99–114, doi: 10.1016/J.TRIBOINT.2005.04.013.
  • 26. Bou-Saleh Z., Shahryari A., Omanovic S., Enhancement of corrosion resistance of a biomedical grade 316LVM stainless steel by potentiodynamic cyclic polarization, Thin Solid Films, 2007, vol. 515, no. 11, pp. 4727–4737, doi: 10.1016/J.TSF.2006.11.054.
Uwagi
PL
Na publikacji błędne nazwisko autora. Powinno być: Kazek-Kęsik Alicja.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1511f718-57c3-4927-8c16-e361158f5c12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.