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Streszczenie. W artykule podjęto tematykę regularności liniowych roz-
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1. Introduction

Let us consider a system of differential equations

dx

dt
= f(x),

dy

dt
= A(x)y, (1)

where x ∈ R
m, y ∈ R

n, f(x) = (f1(x), . . . , fm(x)) – a vector function defined for
all x ∈ R

m, which satisfies the Lipschitz inequality locally. We use CLip(Rm) to
stand for the space of functions f(x) ∈ C0(Tm). Moreover the Cauchy problem
dx

dt
= f(x), x

∣

∣

t=0
= x0, has a solution x = x(t;xo) for every fixed x0 ∈ R

m and the

solution is defined for every t ∈ R. Is is equivalent to ‖f(x)‖ ¬ α1‖x‖+α2, for all
x ∈ R

m with any positive constants α1, α2. Elements of the n× n – dimensional
matrix A(x) are real scalar functions which are continuous and bounded in R

m.
Let us use notation: C0(Rm) – a space of real continuous and bounded in R

m

functions; 〈y, ỹ〉 =
n
∑

i=1

yiỹi – an inner product in R
n, ‖y‖ =

√

〈y, y〉 – a square

form y ∈ R
m; Ωtτ (x0) – a fundamental matrix of the solutions of linear system

dy

dt
= A(x(t;x0))y,

which takes the value of In – n–dimensional identity matrix for t = τ : Ωtτ (x0)
∣

∣

t=τ
=

In; C′(Rm; f) – a subspace of C0(Rm) of functions F (x) such that superposition
F (x(t;x0)) is continuously differentiable with respect to t, where

d

dt
F (x(t;x))

∣

∣

∣

∣

t=0

=df F (̇x) ∈ C0(Rm).

Index 0 in the Cauchy problem solution is frequently missed x = x(t;x0) = x(t;x).
Let us also consider system of differential equations

dx

dt
= f(x),

dy

dt
= A(x)y + h(x), (2)

where the vector function h(x) ∈ C0(Rm). Let us recall useful definitions [1].

Definition 1. We say that the system (2) possesses an invariant bounded manifold

determined by the equality

y = u(x), (3)

when u(x) ∈ C′(Rm; f) and the identity

u̇(x) ≡ A(x)u(x) + h(x) ∀x ∈ R
m

holds.
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Definition 2. Let C(x) be an (n × n)–dimensional continuous matrix, C(x) ∈
C0(Tm). Then the function G0(τ ;x):

G0(τ, x) =

{

Ω0τ (x)C(x(τ, x)), τ ¬ 0,
Ω0τ (x) [C(x(τ, x)) − In] , τ > 0,

(4)

which fulfills the estimate

‖G0(τ, x)‖ ¬ Ke−γ|τ |,

where K and γ are positive constants. The function (4) is called a Green function

of an invariant bounded manifold for the system (1).

In case when the Green function (4) is unique the system (1) is called regular.
When the system (1) possesses more then one Green function (4), then the system
(1) is called sharply–weak regular.
When the Green function (4) exists then the invariant manifold (3) for the

system (2) exists for every function h(x) ∈ C0(Rm). The manifold can be defined
by integral formula

y = u(x) =
∫ ∞

−∞

G0(τ, x) · h(x(τ ;x))dτ.

Examples [2] exist in which the invariant bounded manifold (3) for the system
(2) is unique for every function h(x) ∈ C0(Rm) but the Green function (4) for the
system (1) does not exist.
Researches of systems (1) with right sides defined on torus there are in [2–

8]. In [2] the authors deal with problems of leading sharply–weak regular linear
extensions of dynamical systems to regular systems.
It is obvious [2, 7, 8] that the system (1) is regular when the square form V =

〈(S(x)y, y)〉 with continuously differentiable nondegenerated symmetric matrix of
coefficients S(x) ∈ C′(Rm; f) exists and its derivative along the solutions of the
system (1) is positive or negative definite

V̇ =
〈[

∂S(x)
∂x
f(x) + S(x)A(x) +AT (x)S(x)

]

y, y

〉

­ ‖y‖2 ∀y ∈ R
n, (5)

On the other hand the regularity of the system (1) means the existence of non-
degenerated symmetric matrixes S(x) ∈ C′(Rm; f) which satisfy inequality (5).
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Some of the matrixes can be defined by formula

S(x) = 2
∫

0

−∞

[C(x) − In]
T [Ωz

0
(x)]T Ωz

0
(x) [C(x) − In] dz −

− 2
∫ ∞

0

[C(x)]T [Ωz
0
(x)]T Ωz

0
(x)C(x)dz.

When the inequality (5) holds with symmetric matrix S(x) ∈ C′(Rm; f) and
detS(x̄) = 0 for some x̄ ∈ R

m, then the Green function (4) for the system (1) does
not exist. Moreover many different Green function exist for the conjoint system
to (1):

dx

dt
= f(x),

dy1

dt
= −AT (x)y1, y1 ∈ R

n. (6)

In such systems researches of Green function and invariant manifolds dependence
of parameters [7] is very difficult. Therefore let us lead up the system (6) to regular

dx

dt
= f(x),

dy1

dt
= −AT (x)y1,

dy2

dt
= y1 +A(x)y2, y1, y2 ∈ R

n. (7)

Furthermore the derivative along the solutions of the system (7) of nondegenerated
square form

Vp = p 〈y1, y2〉+ 〈S(x)y1, y2〉 , (8)

when the parameter p≫ 0, is positive defined. The method is effective in researches
of Green function smoothness and invariant manifolds stability.

2.Main results

Les us apply the method to determine all solutions to the algebraic system

B(x)y = h(x), (9)

where B(x) – a rectangular matrix

B(x) =











b11(x) b12(x) . . . b1n(x)
b21(x) b22(x) . . . b2n(x)
. . . . . . . . . . . .

bp1(x) bp2(x) . . . bpn(x)











,

which elements bij(x) are real scalar functions, bounded and continous in R
m.

Rank of matrix B(x) equals number of rows of the matrix

rankB(x) ≡ p, p < n. (10)
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Certainly when the condition (10) is fulfilled the system (9) possesses many dif-
ferent solutions for every vector function h(x). Our goal is to find the solutions
forms. By analogy to (7) let us consider the system (9) which is leading up

{

B(x)y = h(x),

y −BT (x)z = q(x),
(11)

where y ∈ R
n, z ∈ R

p, x ∈ R
m, q(x) – a bounded and continuous in R

m vector
function. Let us the second equation of the system (11):

y = BT (x)z + q(x) (12)

put in the system (9):

B(x)
(

BT (x)z + q(x)
)

= h(x).

From the condition (10) follows that detB(x)BT (x) 6= 0, ∀x ∈ R
m. Making suffi-

cient calculations we will get z:

z =
[

B(x)BT (x)
]−1
[−B(x)q(x) + h(x)] =

= −
[

B(x)BT (x)
]−1
B(x)q(x) +

[

B(x)BT (x)
]−1
h(x).

Putting it to the solution (12), the form of all solutions to (9) is

y =
{

In −B
T (x)

[

B(x)BT (x)
]−1
B(x)

}

q(x)+BT (x)
[

B(x)BT (x)
]−1
h(x). (13)

Remark 3. In the solution (13) the matrix

In −B
T (x)

[

B(x)BT (x)
]−1
B(x) = P (x)

is the projection matrix

P 2(x) ≡ P (x), ∀x ∈ R
m, (14)

and the matrix BT (x)
[

B(x)BT (x)
]−1
is pseudoinverse to the matrix B(x).

Remark 4. Every solution to the system (9) can be represented in the form (13)
with certain vector function q(x).

Example. Let us determine all solutions yj = yj(x1, x2) to the linear scalar
equation with periodic coefficients:

y1 cosx1 cosx2 + y2 cosx1 sinx2 + y3 sinx1 = 0. (15)
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Solution. In this case the matrix B(x) has the following form

B(x) =
(

cosx1 cosx2, cosx1 cosx2, sinx1
)

.

We are searching for a matrix equivalent to (13). Inasmuch as B(x)BT (x) ≡ 1

In −B
T (x)

[

B(x)BT (x)
]−1
B(x) = In −BT (x)B(x) =

=







(1− cos2 x1 cos2 x2) (− cos2 x1 cosx2 sinx2) (− cosx1 sinx1 cosx2)
(− cos2 x1 cosx2 sinx2) (1− cos2 x1 sin2 x2) (− cosx1 sinx1 sinx2)
(− cosx1 sinx1 cosx2) (− cosx1 sinx1 sinx2) cos2 x1






.

All solutions to (14) are in the form






y1

y2

y3






=

=







(1− cos2 x1 cos2 x2) (− cos2 x1 cosx2 sinx2) (− cosx1 sinx1 cosx2)
(− cos2 x1 cosx2 sinx2) (1− cos2 x1 sin2 x2) (− cosx1 sinx1 sinx2)
(− cosx1 sinx1 cosx2) (− cosx1 sinx1 sinx2) cos2 x1







·







q1(x1, x2)
q2(x1, x2)
q3(x1, x2)






,

where q1(x1, x2), q2(x1, x2), q3(x1, x2) – any real functions bounded in R
2.

Let us come back to generalization of the symmetric system (7) in the form

dx

dt
= f(x),

dy1

dt
= −AT (x)y1 +B2(x)y2,

dy2

dt
= B1(x)y1 +A(x)y2, y1, y2 ∈ R

n,

(16)

with the vector function f(x) and the n × n – dimensional matrix A(x), Bj(x),
j = 1, 2 which fulfill smoothness and boundedness conditions as in the system (1).
The matrixes Bj(x), j = 1, 2 are symmetric Bj(x) ≡ BTj (x). The first matrix is
positive definite

〈B1(x)y1, y1〉 ­ β1‖y1‖2, β1 = const > 0, (17)

and the second is nonnegative

〈B2(x)y2, y2〉 ­ 0 ∀y1, y2 ∈ R
n. (18)
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When the conditions (5), (17), (18) hold the nondegenerated square form (8)
derivative along the solutions to the system (7) is positive or negative definite for
sufficiently big values of the parameter p > 0. Certainly in case when B2 ≡ 0,
B1 ≡ In the system (16) becomes the system (7).

Remark 5. When in the system (16) the matrixes B1(x), B2(x) ∈ C0(Rm) fulfills
the conditions (17), (18), and the condition (18) is weakened

〈B2(x)y2, y2〉 ­ β2‖y2‖2, β2 = const > 0,

then the system (16) is regular for every matrix A(x) ∈ C0(Rm).

It is easy to show that the square form V = 〈y1, y2〉, yj ∈ R
n derivative along

the solutions of the system (16) has the following form: V̇ = 〈B1y1, y1〉+〈B2y2, y2〉.
It is positive definite and it does not depend of the matrix A(x) ∈ C0(Rm).
Let us notice the system (16) can be write down in the following form

dx

dt
= f(x),

(

0 In

In 0

)











dy1

dt

dy2

dt











=

=

[(

B1(x) 0
0 B2(x)

)

+

(

0 A(x)
−AT (x) 0

)](

y1

y2

)

.

(19)

In such a form the square form

V =

〈(

0 In

In 0

)(

y1

y2

)

,

(

y1

y2

)〉

derivative along the solutions of the system (19) is

V̇ = 2

〈(

B1(x) 0
0 B2(x)

)(

y1

y2

)

,

(

y1

y2

)〉

.

When the matrix B(x) = diag{B1(x), B2(x)} is positive or negative definite then
the system (19) is regular for every matrix A(x) ∈ C0(Rm). Let us generalize the
system (19):

dx

dt
= f(x), S

dy

dt
= [B(x) +M(x)] y, y ∈ R

k, (20)
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where S – any nondegenerated symmetric matrix, B(x) – a symmetric matrix,
M(x) – a skew-symmetric matrix B(x),M(x) ∈ C0(Rm). In case in the system
(20) number of parameters y is even k = 2n and let us take a notation y = (y1, y2),
yj ∈ R

n and the matrix S is in the form

S =

(

0 In

In 0

)

, B(x) =

(

B1(x) 0
0 B2(x)

)

,

M(x) =

(

0 A(x)
−AT (x) 0

)

,

the system (20) becomes the system (19). It means that the system (20) can be
transformed to the scalar system (19). Certainly the square form

V = 〈Sy, y〉

derivative along the solutions of the system (20) has the following form

V̇ = 〈2B(x)y, y〉 . (21)

Subsequently let us generalize the system (20) and replace the constant matrix
S with a nondegenerated continuous matrix S(x) ∈ C′(Rm; f) in such a way the
square form V = 〈S(x)y, y〉 derivative along the solutions of the system (20) will
fulfills (21). When in the system (20) the matrix S will be replaced with S(x) then
(21) does not hold. Therefore let us consider the system (20) in the following form

dx

dt
= f(x), S(x)

dy

dt
=
[

B(x) +M(x)−
1
2
Ṡ(x)

]

y, y ∈ R
k. (22)

The square form V = 〈S(x)y, y〉 derivative along the solutions of the system (22)
will fulfills (21).
On the other hand we can research the system (22) in a different way. Let

a nondegenerated symmetric matrix S(x) ∈ C′(Rm; f) exists and (5) holds. Cer-
tainly the system (1) is equivalent to the system

dx

dt
= f(x), S(x)

dy

dt
= S(x)A(x)y,

and it is equivalent to

dx

dt
= f(x), S(x)

dy

dt
+
1
2
Ṡ(x)y =

[

S(x)A(x) +
1
2
Ṡ(x)

]

y. (23)
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In the system let us denote

Ā(x) = S(x)A(x) +
1
2
Ṡ(x).

Let us symetrize the matrix

Ā(x) =
1
2

(

Ā(x) + ĀT (x)
)

+
1
2

(

Ā(x)− ĀT (x)
)

=

=
1
2

{

[

S(x)A(x) +
1
2
Ṡ(x)

]

+
[

S(x)A(x) +
1
2
Ṡ(x)

]T
}

+

+
1
2

{

[

S(x)A(x) +
1
2
Ṡ(x)

]

−

[

S(x)A(x) +
1
2
Ṡ(x)

]T
}

=

=
1
2

{

S(x)A(x) +AT (x)S(x) + Ṡ(x)
}

+
1
2

{

S(x)A(x) −AT (x)S(x)
}

.

Let us denote
B(x) =

1
2

{

S(x)A(x) +AT (x)S(x) + Ṡ(x)
}

, (24)

M(x) =
1
2

{

S(x)A(x) −AT (x)S(x)
}

, (25)

and the system (23) becomes as follows

dx

dt
= f(x), S(x)

dy

dt
+
1
2
Ṡ(x)y = [B(x) +M(x)] y,

where the matrix B(x) is in the form (24) and is positive definite. The skew-
symmetric matrix M(x) is in the form (25). When we transpose 1

2
Ṡ(x)y to right

side we get the system (22).
Let us research the system (22) as individual system with a symmetric matrix

S(x) ∈ C′(Rm; f) which fulfills the assumptions:

detS(x) 6= 0 ∀x ∈ R
m, ‖S−1(x)‖ ¬ const <∞.

Let us consider the system (22) regularity with this assumptions.
From the equality (21) for the square form V = 〈S(x)y, y〉, y ∈ R

k the remark
is true.

Remark 6. When in the system (22) the symmetric matrix B(x) ∈ C0(Rm)
is positive definite 〈B(x)y, y〉 ­ β‖y‖2, β = const > 0 or negative definite
〈B(x)y, y〉 ¬ −β‖y‖2, β = const > 0 the system (22) is regular for every skew–
symmetric matrix M(x) ∈ C0(Rm).
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An auxiliary lemma holds true.

Lemma 7. Let k× k – dimensional symmetric matrix B(x) ∈ C0(Rm) fulfills the
following inequality

〈B(x)y, y〉 ­ 0 ∀y ∈ R
k, x ∈ R

m, (26)

then for every fixed k× k–dimensional matrix Ψ(x) ∈ C0(Rm) parameter p > 0 is
sufficiently big that the square form

V = ‖y‖2 + p 〈B(x)y, y〉 + 〈B(x)y,Ψ(x)y〉 , y ∈ R
k, (27)

is positive definite.

Proof. Let us consider the square form

Φp = ‖y‖2 + p 〈B(x)y, y〉+ 2 〈B(x)y,Ψ(x)z〉+ ‖z‖2, x, y ∈ R
k. (28)

Let us show that the square form is positive definite when the parameter p > 0 is
sufficiently big. The square form (28) can be rearranged

Φp = 〈(In + pB(x)) y, y〉+ 2
〈

ΨT (x)B(x)y, z
〉

+ ‖z‖2 =

= 〈Γp (y +Kz) , (y +Kz)〉+ ‖z‖2 − 〈ΓpKz,Kz〉 , (29)

where
Γp = Ik + pB(x), K = Γ−1p B(x)Ψ(x). (30)

From the equality (29) we have

Φp ­ ‖y +Kz‖2 +
(

1− ‖KTΓpK‖0
)

‖z‖2.

Let us notice that the square form (28) is positive definite when the condition
holds true

‖KTΓpK‖0 < 1

and the parameter p > 0 is sufficiently big. Let us remind sufficient notation

‖KTΓpK‖0 = sup
x∈Rm

‖KT (x)Γp(x)K(x)‖.

From (30) follows

KTΓpK = ΨT (x)B(x)Γ−1p (x)B(x)Ψ(x). (31)
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For sufficiently big p > 0 the following inequality holds true

‖Γ−1p B‖0 ¬
1
p
. (32)

Let us fix x = x0 ∈ R
m and transform the matrix B(x0) = B into diagonal form

Q−1BQ = diag{β1, . . . , βk}, (33)

where Q – orthogonal matrix, QT = Q−1. From the inequality (26) follows that
βj ­ 0, j = 1, k. By (33) we have the product Γ−1p B:

Γ−1p B =
1
p
(Ik + pB)

−1 (pB) =

=
1
p
Q diag

{

1
1 + pβ1

, . . . ,
1

1 + pβk

}

Q−1 ·Q diag {pβ1, . . . , pβk}Q−1 =

=
1
p
Q diag

{

pβ1

1 + pβ1
, . . . ,

pβk

1 + pβk

}

Q−1. (34)

We have (by ‖Q‖ = ‖Q‖−1 = 1 and (34)):

‖Γ−1p B‖ ¬
1
p

∣

∣

∣

∣

∣

∣

∣

∣

diag
{

pβ1

1 + pβ1
, . . . ,

pβk

1 + pβk

}∣

∣

∣

∣

∣

∣

∣

∣

<
1
p
.

Let us transpose x = x0 ∈ R
m in the inequality (32). From βj ­ 0 (31) and

inequality (32) we have

‖KTΓpK‖ ¬ ‖ΨT (x)‖ · ‖B(x)‖ · ‖Γ−1p (x)B(x)‖ · ‖Ψ(x)‖ ¬
1
p
‖Ψ‖20‖B‖0.

When the parameter p ­ 2‖Ψ‖2
0
‖B‖0 then ‖KTΓpK‖0 ¬ 0, 5. The square form

(28) derivative is then positive definite

Φp = ‖y‖2 + p 〈B(x)y, y〉+ 2 〈B(x)y,Ψ(x)z〉+ ‖z‖2 ­ ǫ
(

‖x‖2 + ‖y‖2
)

,

ǫ = const > 0. In the inequality let us replace z = y:

2‖y‖2 + p 〈B(x)y, y〉+ 2 〈B(x)y,Ψ(x)y〉 ­ 2ǫ‖y‖2, ǫ = const > 0.

Let us replace p→ 2p and we get positive definite square form (27). �

The following theorem holds true.

Theorem 8. Let the system(22) with B(x) ≡ 0:

dx

dt
= f(x), S(x)

dy

dt
=
[

M(x)−
1
2
Ṡ(x)

]

y (35)
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possesses at least one Green function (4) then the Green function is unique, the

number of variable y (y ∈ R
k) is even k = 2n and the system (22) is regular for

every symmetric matrix B(x) ∈ C0(Rm) which satisfies (26).

Proof. Let us denote

N(x) = S−1(x)
[

M(x)−
1
2
Ṡ(x)

]

. (36)

Because the system (35) possesses at least one Green function the square form
〈Θ(x)z, z〉 = V , Θ(x) ≡ ΘT (x) ∈ C′(Rm; f) exists and its derivative along the
conjoint system to (35):

dx

dt
= f(x),

dz

dt
= −NT (x)z

is positive definite. That is the inequality holds true

V̇ =
〈[

Θ̇(x)− Θ(x)NT (x) −N(x)Θ(x)
]

z, z
〉

­ ‖z‖2. (37)

We note that the square form

〈S(x)Θ(x)S(x)y, y〉 =W

derivative along the solutions of the system (35) is also positive definite. Let us
change the variables z = S(x)y in the equality (37). We have

S
{

Θ̇−ΘNT −NΘ
}

= S
{

Θ̇ + Θ
[

M +
1
2
Ṡ

]

S−1 + S−1
[

−M +
1
2
Ṡ

]

Θ
}

S =

= SΘ̇S +
1
2
SΘṠ +

1
2
ṠΘS + SΘM −MΘS =

= SΘ̇S + ṠΘS + SΘṠ −
1
2
SΘṠ −

1
2
ṠΘS + SΘM −MΘS =

= ṠΘS + SΘ̇S + SΘṠ + SΘS
{

S−1
[

M −
1
2
Ṡ

]}

+
{

S−1
[

M −
1
2
Ṡ

]}T

SΘS.

That is the square form derivative along the solutions of the system (35) is positive
definite

Ẇ ­ ‖S(x)y‖2 ­
1

‖S−1‖2
0

‖y‖2 = ǫ‖y‖2.

It means the two square forms V and W existence follows detΘ 6= 0 ∀x ∈ R
m and

the system (35) is regular.
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Let us proof that in regular system (35) the number of variables k is even.
When the system (35) is regular then the linear system

dy

dt
= NT (x(t;x))y (38)

is exponentially dichotomic on the axis R. Let us assume the system (38) has r
linear independent solutions which approach zero +∞ and k−r linear independent
solutions which approach zero in −∞. Then the conjoint system

dz

dt
= −NT (x(t;x))z (39)

has r linear independent solutions which approach zero in −∞ and k − r linear
independent solutions which approach zero in +∞. On the other hand from (36)
and skew-symmetric matrix M(x) the systems (38) and (39) satisfy the identity
S(x(t;x)) · y(t) ≡ z(t). It means that both systems (38) and (39) have identi-
cal number of solution which approach to zero in +∞. Therefore k is even and
k − r = r.
Let us proof the system (22) regularity for symmetric matrix B(x) ∈ C0(Rm)

which fulfills (26). Let us consider the square form with positive parameter p:

Vp = p 〈S(x)y, y〉+ 〈S(x)Θ(x)S(x)y, y〉

and let us show that its derivative along the solutions of the system (22) is positive
definite for sufficiently big p > 0. Let denote Θ1(x) = S(x)Θ(x)S(x) and by (36)
we have

V̇p = 2p 〈B(x)y, y〉+
〈[

Θ̇1(x) + Θ1(x)
(

S−1(x)B(x) +N(x)
)

+

+
(

B(x)S−1(x) +NT (x)
)

Θ1(x)
]

y, y
〉

=

=
〈(

Θ̇1(x) + Θ1N +NTΘ1
)

y, y
〉

+ 2p 〈B(x)y, y〉 +
〈

Θ1S−1By, y
〉

+

+
〈

BS−1Θ1y, y
〉

­ ǫ‖y‖2 + 2p 〈By, y〉+ 2
〈

By, S−1Θ1y
〉

.

By the lemma the derivative V̇p is positive definite for sufficiently big p > 0. That
is the system (22) is regular. �

Remark 9. The theorem holds true when matrix B(x) is negative definite
〈B(x)y, y〉 ¬ 0, ∀y ∈ R

k, x ∈ R
m.

Remark 10. In case in the system (22) the matrix B(x) is not symmetric, the
condition (26) is not sufficient to regularity of system (22) when the system (35)
is regular.
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Let us consider the system which fulfills the theorem assumptions

dx

dt
= f(x),

[

0 1
1 0

]

d

dt

[

y1

y2

]

=

=

{[

β1 cos2 x 0
0 β2 cos4 x

]

+

[

0 −1
1 0

]}[

y1

y2

]

,

(40)

where f(x) ∈ CLip(R), β1 > 0, β2 > 0. All theorem assumptions hold so the system
(40) is regular for every function f(x) ∈ CLip(R). On the other hand we can proof
the system (40) regularity by the Lyapunov function:

Vp = py1y2 + y21 − y
2

2
.

Remark 11. The theorem contains sufficient conditions for the system (22) re-
gularity. We can show that the theorem does not hold true and the system (22) is
regular.

Let us consider the example

dx

dt
= 1,

[

0 1
1 0

]

d

dt

[

y1

y2

]

=

=

{[

β1 cos2 x 0
0 β2 cos4 x

]

+

[

0 − sinx
sinx 0

]}[

y1

y2

]

,

(41)

where β1 > 0, β2 > 0. In the example the system corresponding to (35) is in the
following form

dx

dt
= 1,

[

0 1
1 0

]

d

dt

[

y1

y2

]

=

[

0 − sinx
sinx 0

][

y1

y2

]

and it is not regular because the heterogeneous system

dy1

dt
= y1 sin t+ h1(t),

dy2

dt
= −y2 sin t+ y2(t),
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has bounded on R solution for every function (h1(t), h2(t)). Besides when the
conditions hold β1 > 0, β2 > 0 the system (41) is regular. To check the system
regularity let us consider the square form:

V = py1y2 +
(

y2
1
− y2
1

)

sinx,

where p > 0.

Remark 12. Let us notice that the system (41) has the following form

dx

dt
= 1

[

0 1
1 0

]

d

dt

[

y1

y2

]

=

=

{[

β1 0
0 0

]

cos2 x+

[

0 0
0 β2

]

cos4 x+

[

0 −1
1 0

]

sinx

}[

y1

y2

]

.

Because the theorem assumptions do not hold for the system it is interesting to
research the following system

dx

dt
= f(x), S

dy

dt
=





k
∑

j=1

Bj(x) · νj(x) +M(x)µ(x)



 y, (42)

with symmetric continuos matrix S, f(x) ∈ CLip(Rm).

Let the symmetric matrix B(x) ∈ C0(Rm) in the system (42) fulfills

〈Bj(x)y, y〉 ­ 0, j = 1, k, ∀x ∈ R
m, y ∈ R

n,

k
∑

j=1

〈Bj(x)y, y〉 ­ β‖y‖2, β = const > 0.
(43)

The matrixM(x) ∈ C0(Rm) is skew-symmetric. Scalar functions νj(x) ∈ C0(Rm),
j = 1, k and the condition holds

νj(x) ­ 0, j = 1, k ∀x ∈ R
m.

For example cos2 x, | cosx|, cos4 x, 1

chx
,
(

1

ch x

)n
, sin2n x1 cos2k x2 itd. The scalar

function µ(x) is bounded in R
m, it has continous derivative and all first partial
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derivatives are continuous and bounded in R
m, that is µ(x) ∈ C1(Rm) ∩C0(Rm),

∂µ(x)
∂xi

∈ C0(Rm). For example sinx, (sinx)2k−1, thx, (th x)2k−1 etc.

Let us select the scalar function νj(x), µ(x) to the inequality holds true

pν0(x) + µ2(x) −K
m
∑

i=1

∣

∣

∣

∣

∂µ(x)
∂xi

∣

∣

∣

∣

− Lν̄(x) ­ ǫ, ǫ = const > 0, (44)

for every constant K, L and sufficiently big parameter p > 0 and x ∈ R
m where

ν0(x) = min {ν1(x), . . . , νk}, ν̄(x) = max {ν1(x), . . . , νk(x)}. Let ν1(x) = cos8 x,
ν2(x) = cos10 x, µ(x) = sin3 x and the inequality (44) holds true for sufficiently
big parameter p > 0.
The following theorem holds true.

Theorem 13. Let a constant symmetric n×n – dimensional matrix Θ exists and
the inequality holds true

〈[

ΘS−1M(x)−M(x)S−1Θ(x)
]

y, y
〉

­ ‖y‖2, ∀y ∈ R
n.

When the conditions (43) – (44) hold the system (42) is regular for every fixed

bounded function f(x) ∈ CLip(Rm) ∩ C0(Rm). Moreover the square form

V = p 〈Sy, y〉+ 〈Θy, y〉 · µ(x) (45)

derivative along the solutions of the system (42) is positive definite for sufficiently

big parameter p > 0.

Proof. The square form (45) derivative along the solutions of the system (42):

V̇ = 2p
k
∑

j=1

〈Bj(x)y, y〉 · νj(x) +

+ 2

〈

Θy, S−1





k
∑

j=1

Bj(x) · νj(x) +M(x)µ(x)



 y

〉

µ(x) + 〈Θy, y〉 µ̇(x) ­

­ 2pβ‖y‖2ν0(x) + 2

〈

Θy, S−1





k
∑

j=1

Bj(x)νj(x)



 y

〉

µ(x) +

+ 2
〈

Θy, S−1M(x)y
〉

µ2(x) + 〈Θy, y〉 µ̇(x), (46)



Sharply-weak regular linear extensions. . . 67

where µ̇(x) =
m
∑

i=1

∂µ(x)
∂xi
fi(x). Let us estimate every summand in the inequali-

ty (46):

2
〈

Θy, S−1Bj(x)y
〉

νj(x)µ(x) ­

­ −2
∣

∣

∣

∣ΘS−1Bj
∣

∣

∣

∣

0
‖y‖2νj(x)‖µ‖0 ­ −L0νj(x)‖y‖2,

2
〈

Θy, S−1M(x)y
〉

µ2(x) ­ ‖y‖2µ2(x),

〈Θy, y〉 µ̇(x) ­ −‖Θ‖ · µ̇(x) · ‖y‖2 ­ −K1
m
∑

i=1

∣

∣

∣

∣

∂µ

∂xi

∣

∣

∣

∣

‖y‖2,

where L0,K1 – positive constant. We have

V̇ ­

(

2pβν0(x) + µ2(x)−K1
m
∑

i=1

∣

∣

∣

∣

∂µ

∂xi

∣

∣

∣

∣

− Lν̄(x)
)

‖y‖2.

By (44) we can select the scalar function νj(x), µ(x) that for every constant K,
L and sufficiently big parameter p > 0 the derivative V̇ is positive definite. Then
the system (42) is regular. �
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Omówienie

W artykule przeprowadzono badania regularności liniowych rozszerzeń ukła-
dów dynamicznych. Wykorzystano metodę funkcji Lapunowa o zmiennym znaku,
która jest niezwykle efektywnym narzędziem. Ponadto, przedstawiono metodę do-
prowadzenia układów słabo regularnych do regularnych. Przestawiono warunki
regularności układu o postaci:

dx

dt
= f(x), S(x)

dy

dt
=
[

M(x)−
1
2
Ṡ(x)

]

y.

Podano konstrukcję formy kwadratowej:

V = p 〈Sy, y〉+ 〈Θy, y〉 · µ(x)

za pomocą, której udowodniono regularność układu:

dx

dt
= f(x), S

dy

dt
=





k
∑

j=1

Bj(x) · νj(x) +M(x)µ(x)



 y.


