Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Antibacterial properties of 15 titania photocatalysts, mono- and dual-modified with nitrogen and carbon were examined. Amorphous TiO2 , supplied by Azoty Group Chemical Factory Police S.A., was used as titania source (Ar-TiO2 , C-TiO2 , N-TiO2 ;2 and N,C-Ti2 2 calcined at 300°C, 400°C, 500°C, 600°C, 700°C). The disinfection ability was examined against Escherichia coli K12 under irradiation with UV and artificial sunlight and in dark conditions. It has been found the development of new photocatalysts with enhanced interaction ability with microorganisms might be a useful strategy to improve disinfection method conducted under artificial sunlight irradiation. The efficiency of disinfection process conducted under artificial sunlight irradiation with carbon (C-TiO2 ) and carbon/nitrogen (N,C-TiO2 ) photocatalysts was similar as obtained under UV irradiation. Furthermore, during dark incubation, any toxicity of the photocatalyst was noted.
Czasopismo
Rocznik
Tom
Strony
56--64
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
autor
- Hokkaido University, Institute for Catalysis, North 21, West 10, Sapporo 001-0021, Japan
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
- 1. Pigeot-Rémy, S., Simonet, F., Errazuriz-Cerda, E., Lazzaroni, J.C., Atlan, D. & Guillard, C. (2011). Photocatalysis and disinfection of water: Identification of potential bacterial targets. Appl. Catal., B. 104(3–4), 390–398. DOI: 10.1016/j.apcatb.2011.03.001.
- 2. Grojec, A. (2015) (Eds.) Progress on sanitation and drinking water – 2015 update and MDG assessment, WHO Press 2015.
- 3. Wang, W., Huang, G., Yu, J.C. & Wong, P.K. (2015). Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. J. Environ. Sci. 34, 232–247. DOI: 10.1016/j.jes.2015.05.003.
- 4. Huaa, G. & Reckhow, D.A. (2007). Comparison of dis-infection byproduct formation from chlorine and alternative disinfectants. Water Res. 41(8), 1667–1678. DOI: 10.1016/j.watres.2007.01.032.
- 5. Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 37(8), 1443–1467. DOI: 10.1016/S0043-1354(02)00457-8.
- 6. Lazar, M.J., Varghese, S. & Nair, S.S. (2012). Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2(4), 527–601. DOI: 10.3390/catal2040572.
- 7. Nakata, K. & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochem. Rev. 13(3), 169–189. DOI: 10.1016/j.jphotochemrev.2012.06.001.
- 8. Augugliaroa, V., Bellarditaa, M., Loddoa, V., Palmisanoa, G., Palmisanoa, L. & Yurdakal, S. (2002). Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 13(3), 224–245. DOI: 10.1016/j.jphotochemrev.2012.04.003.
- 9. Olmez, H. & Kretzschmar, U. (2009). Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. Food Sci. Techn. 42(3), 686–693. DOI: 10.1016/j.lwt.2008.08.001.
- 10. Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Res. 44(10), 2997–3027. DOI: 10.1016/j.watres.2010.02.039.
- 11. Mccullagh, C., Robertson, J.M.C., Bahnemann, D.W. & Robertson, P.K.J. (2007). The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic microorganism: a review. Res. Chem. Intermed. 33(3), 359–375. DOI: 10.1163/156856707779238775.
- 12. Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J. & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Cat. Today 147(1), 1–60. DOI: 10.1016/j.cattod.2009.06.018.
- 13. Kowalska, E., Mahaney, O.O.P., Abe, R. & Ohtani, B. (2010). Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12, 2344–2355. DOI: 10.1039/B917399D.
- 14. Wang, P., Huang, B., Qin, X., Zhang, X., Dai, Y., Wei, J. & Whangbo, M.H. (2008). Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Edit. 47(41), 7931–7933. DOI: 10.1002/anie.200802483.
- 15. Morawski, A.W., Janus, M., Tryba, B., Inagaki, M. & Kałucki, K. (2006). TiO2 – anatase modified by carbon as the photocatalyst under visible light. CR Chim. 9(5–6), 800–805. DOI: 10.1016/j.crci.2005.03.021.
- 16. Zhou, N., Polavarapu, L., Gao, N., Pan, Y., Yuan, P., Wangbc, G. & Xu, Q.H. (2013). TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 5, 4236–4241. DOI: 10.1039/C3NR00517H.
- 17. Ilieva, V., Tomovaa, D., Rakovskya, S., Eliyas, A. & Li Puma, G. (2010). Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. J. Mol. Catal. A-Chem. 327(1–2), 51–57. DOI: 10.1016/j.molcata.2010.05.012.
- 18. Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T. & Matsumura, M. (2004). Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Cat. A-General 265(1), 115–121. DOI: 10.1016/j.apcata.2004.01.007.
- 19. Janus, M., Markowska-Szczupak, A., Kusiak-Nejman, E. & Morawski, A.W. (2012). Disinfection of E. coli by carbon modified TiO2 photocatalysts. Environ. Prot. Eng. 38(2), 89–97. DOI: 10.5277/epe120208.
- 20. Ohno, T., Sarukawa, K. & Matsumura, M. (2001). Photo-catalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 105(12), 2417–2420. DOI: 10.1021/jp003211z.
- 21. Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P. & Guillard, C. (2007). Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl. Cat. B: Environ. 76, 257–263. DOI: 10.1016/j.apcatb.2007.05.026.
- 22. Hu, C., Lan, Y., Qu, J., Hu, X. & Wang, A. (2006). Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. 110(9), 4066–4072. DOI: 10.1021/jp0564400.
- 23. Shi, H., Li, G., Suna, H., Ana, T., Zhao, H. & Wong, P.K. (2014). Visible-light-driven photocatalytic inactivation of E. coli by Ag/AgX-CNTs (X = Cl, Br, I) plasmonic photocatalysts: Bacterial performance and deactivation mechanism. Appl. Cat.-B: Environ. 158–159, 301–307. DOI: 10.1016/j.apcatb.2014.04.033.
- 24. Hadrup, N. & Lam, H.R. (2014). Oral toxicity of silver ions, silver nanoparticles and colloidal silver – A review. Regul. Toxicol. Pharmacol. 68(1), 1–7. DOI: 10.1016/j.yrtph.2013.11.002.
- 25. Kowalska, E., Wei, Z., Karabiyik, B., Herissan, A., Janczarek, M., Endo, M., Markowska-Szczupak, A., Remita, H. & Ohtani, B. (2015). Silver-modified titania with enhanced photocatalytic and antimicrobial properties under UV and visible light irradiation. Cat. Today 252, 136–142. DOI: 10.1016/j.cattod.2014.10.038.
- 26. Sütterlin, S. (2015). Aspects of Bacterial Resistance to Silver. Dissertations from the Faculty of Medicine 1084. Uppsala Universitet.
- 27. Cheng, C.L., Sun, D.S., Chu, W.C., Tseng, Y.H., Ho, H.C., Wang, J.B., Chung, P.H., Chen, J.H., Tsai, P.J., Lin, N.T., Yu, M.S. & Chang, H.H. (2009). The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bacteridical performance. J. Biom. Sci. 16(1), 7. DOI: 10.1186/1423-0127-16-7.
- 28. Choina, J., Dolat, D., Kusiak, E., Janus, M. & Morawski, A.W. (2009). TiO2 modified by ammonia as a long lifetime photocatalyst for dyes decomposition. Pol. J. Chem. Technol. 11(4), 1–6. DOI: 10.2478/v10026-009-0035-9.
- 29. Bubacz, K., Choina, J., Dolat, D. & Morawski, A.W. (2010). Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2. Pol. J. Environ. Stud. 19(4), 685–691.
- 30. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67(4), 593–656. DOI: 10.1128/MMBR.67.4.593-656.2003.
- 31. Jiang, J., Oberdorster, G., Elder, A., Gelein, R., Mercer, P. & Biswas, P. (2008). Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1), 33–42. DOI: 10.1080/17435390701882478.
- 32. Chen, D., Yang, D., Wang, Q. & Jiang, Z. (2006). Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind. Eng. Chem. Res. 45(12), 4110–4116. DOI: 10.1021/ie0600902.
- 33. Yang, Y., Zhong, H. & Tian, C. (2010). Photocatalytic mechanisms of modified titania under visible light. Res. Chem. Intermed. 37, 91–102. DOI: 10.1007/s11164-010-0232-4.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-150d29e3-7757-4204-aa63-7fe011161969