PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Compression Properties of Fe-Cr-B Alloy Manufactured using Laser Metal Deposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fe-Cr-B alloy is a material with precipitation of boride inside Fe matrix, and it features outstanding hardness and wear resistance properties. However, Fe-Cr-B alloy is a difficult material to process, making it difficult to use as a bulk type structure material which requires delicate shapes. This study attempted to manufacture Fe-Cr-B alloy using a 3D printing process, laser metal deposition. This study also investigated the microstructure, hardness and compression properties of the manufactured alloy. Phase analysis results is confirmed that α-Fe phase as matrix and (Cr, Fe)2B phase as reinforcement phase. In the case of (Cr, Fe)2B phase, differences were observed according to the sample location. While long, coarse, unidirectional needle-type boride phases (~11 μm thickness) were observed in the center area of the sample, relatively finer boride phases (~6 μm thickness) in random directions were observed in other areas. At room temperature compression test results confirmed that the sample had a compression strength is approximately 2.1 GPa, proving that the sample is a material with extremely high strength. Observation of the compression fracture surface identified intergranular fractures in areas with needle-type boride, and transgranular fractures in areas with random borides. Based on this results, this study also reviewed the deformation behavior of LMD Fe-Cr-B alloy in relation to its microstructures.
Twórcy
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
autor
  • Bestner, Eumseong-Gun 15244, Republic of Korea
autor
  • Rist, Pohang-Si, Gyeongbuk 37673, Republic of Korea
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
Bibliografia
  • [1] A. Rottger, J. Lentz, W. Theisen, Mater. Des. 88, 420-429 (2015).
  • [2] S. Ma, J. Xing, H. Fu, Y. Gao, J. Zhang, Acta Mater. 60, 831-843 (2012).
  • [3] M. F. Erinosho, E. T. Akinlabi, S. Pityana, Proceding of the world congress on engineering, (2014).
  • [4] C. Y. Kong, R. J. Scudamore, J. Allen, Physic. Proced. 5, 379-386 (2010).
  • [5] H. J. Kim, S. Grossi, Y. G. Kweon, Met. Mater. 5, 63 (1999).
  • [6] H. J Kim, B. H. Yoon, C. H. Lee, Wear 249, 846 (2002).
  • [7] K. H. Lee, D. H. Nam, S. H. Lee, C. N. Paul Kim, Mater. Sci. Eng. A 428, 124 (2006).
  • [8] J. Do, H. J. Lee, C. Jeon, D. J. Ha, C. Kim, B. J. Lee, S. Lee, Y. S. Shin, Metall. Mater. Trans. A 43A, 2012-2237 (2012).
  • [9] C. Y. Son, T. S. Yoon, S. Lee, Metall. Mater. Trans. A 40A, 11101117 (2009).
  • [10] A. A. Sorour, “Microstructure and Tribology of Fe–Cr–B-Based Alloys”, Department of Mining and Materials Engineering, McGill University, Doctor of Philosophy (2014).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-150bf5a7-734b-4107-a8eb-d84bd09e301a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.