PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparing geologic structural mapping techniques in tectonically active region of Lake Van using gravity and seismological data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Van Lake region is situated within the boundary of the collision zone between the Arabian and Eurasian plates, which has resulted in the formation of a variety of geological structures, including faults, volcanoes, and uplifted mountain ranges. A comprehensive understanding of these structures can yield significant information pertaining to the region’s tectonic history, as well as potential tectonic hazards. In the present study, several structural mapping techniques, including lineament detection techniques [Horizontal Gradient Magnitude (HGM), Analytic Signal (AS), and Tilt Angle] and curvature analysis attributes (Differential, Gaussian, Mean, and Shape Index), were analyzed and compared the results obtained using both Earth Gravity Model 2008 (EGM2008) Bouguer gravity and seismological data, with the goal of determining the most effective (suitable) edge detection method in order to gain a better understanding of high-stress regions and areas of potential seismic hazard in the vicinity of Van Lake. It is of great importance to investigate the behavior of faults and the curvatures of structural features within the crust, as they play a significant role in determining the distribution of stress, and subsequently, its impact on surface structures. The results show that HGM and AS are effective in defining fault strikes and trends, while Gaussian curvature attributes can detect lineaments and structural edges. Differential curvature attributes were found to be best suited for complex tectonic regions. The study also reveals a coherent relationship between fold orientation and fault strikes with the regional principal stress direction. The current study has focused on a region characterized by a significant negative anomaly, which appears to be a valley-like fold structure with a highly inclined interlimb angle. This area, referred to as the “silent” zone, is seismically quiet with regard to earthquakes and faults. However, focal mechanism results support the orientation of the interlimb angle fold in the vicinity of this region. The existence of a strong negative anomaly in the eastern part of the study area highlights the requirement for additional geological field observations and seismic surveys to evaluate the potential earthquake hazards. In the course of comparing various structural mapping techniques, it was concluded that the application of second-order vertical derivative of gravity potential is a suggested approach for identifying the edges of causative structures.
Czasopismo
Rocznik
Strony
1587--1600
Opis fizyczny
Bibliogr. 72 poz.
Twórcy
  • General Directorate of Mineral Research and Exploration, 06800 Ankara, Turkey
  • Kocaeli University, 41380 Kocaeli, Turkey
Bibliografia
  • 1. Akin U, §erifoglu BI, Duru M (2011) The use of tilt angle in gravity and magnetic methods. Miner Res Expl Bull 143:1-12
  • 2. Ansari AH, Alamdar K (2011) A new edge detection method based on the analytic signal of tilt angle ASTA for magnetic and gravity anomalies. Iran J Sci Technol 35(A2):81-88
  • 3. Airy GB (1855) On the computation of the effect of the attraction of mountain masses. Philos Trans R Soc Lond 145:101-104
  • 4. Arikan F, Deviren MN, Lenk O, Sezen U, Arikan O (2012) Observed ionospheric effects of 23 October 2011 Van, Turkey Earthquake. Geomat Nat Hazards Risk 3:1-8. https://doi.org/10.1080/19475 705.2011.638027
  • 5. Ates A, Bilim F, Buyuksarac A, Aydemir A, Bektas O, Aslan Y (2012) Crustal structure of Turkey from aeromagnetic, gravity and deep seismic reflection data. Surv Geophys 33:869-885
  • 6. Bansal AR, Dimri VP (2001) Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure Appl Geophys 158:799-812
  • 7. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press
  • 8. Blakely RJ, Simpson RW (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7):1494-1498. https://doi.org/10.1190/1.1442197
  • 9. Cascone L, Campbell S (2012) ACLAS: a new automatic method of defining potential field lineaments using coherency analysis. In: Proceedings of SEG annual meeting, 4-9 November 2012, Las Vegas, USA, SEG-2012-1254
  • 10. Cordell L, Grauch VJS (1985) Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: Hinze WM (ed) The utility of regional gravity and magnetic maps. Society Exploration Geophysics, Tulsa, pp 181-197
  • 11. Cukur D, Krastel S, Schmincke H, Sumita M, ęagatay M, Meydan A, Damci E, Stockhecke M (2014) Seismic stratigraphy of Lake Van, eastern Turkey. Quatern Sci Rev 104:63-84
  • 12. Degens ET, Kurtman F (1978) The geology of Lake Van. M.T.A. Press, Ankara
  • 13. Degens ET, Wong HK, Kempe S, Kurtmann F (1984) A geological study of Lake Van, Eastern Turkey. Geol Rundsch 73(2):701-734
  • 14. Dogru F. and Pamukęu O. 2016. Comparison of EGM2008 Bouguer gravity with ground survey: a case study in western Anatolian Region, Turkey. In: Proceedings of II international conference on engineering and natural sciences (ICENS), pp 1-7
  • 15. Dogru F, Pamukęu O, G0nenę T, Yildiz H (2018) Lithospheric structure of western Anatolia and the Aegean Sea using GOCE-based gravity field models. Bolletino Di Geofisica Teorica Ed Applicata 59:135-160. https://doi.org/10.4430/bgta0231
  • 16. Dyn N, Hormann K, Kim SJ, Levin D (2001) Optimizing 3D triangulations using discrete curvature analysis. Math Methods Curves Surf 1:135-146
  • 17. Fedi M (2002) Multiscale derivative analysis: a new tool to enhance gravity source boundaries at various scales. Geophys Res Lett 29(2):1029-1032. https://doi.org/10.1029/2001GL013866
  • 18. Fedi M, Florio G, Cascone L (2012) Multiscale analysis of potential fields by a ridge consistency criterion: the reconstruction of the
  • 19. Bishop basement. Geophys J Int 188(1):103-114. https://doi. org/10.1111/j.1365-246X.2011.05259.x
  • 20. Ghosh G (2016) Interpretation of gravity data using 3D Euler deconvolution, tilt angle, horizontal tilt angle and source edge approximation of the North-West Himalaya. Acta Geophys 64(4):1112-1138
  • 21. Ghosh GG, Dasgupta R (2013) Edge detection and depth estimation using 3D Euler deconvolution, tilt angle derivative and TDX derivative using magnetic data of thrust fold belt area of Mizoram. In: 10th Biennial international conference & exposition
  • 22. Hansen RO, Pawlowski RS, Wang X (1987) Joint use of analytic signal and amplitude of horizontal gradient maxima for three-dimensional gravity data interpretation. In: 57th Annual international management, Society of Exploration Geophysicists, Expanded Abstracts, pp 100-102
  • 23. Hood PJ, Teskey DJ (1989) Aeromagnetic gradiometer program of the Geological Survey of Canada. Geophysics 54:1012-1022
  • 24. Hsu SK, Sibuet JC, Shyu CT (1996) High resolution detection of geological boundaries from potential field anomalies. An enhanced analytic signal technique. Geophysics 61(2):373-386. https://doi. org/10.1190/1.1443966
  • 25. Innocenti F, Mazzuoli R, Pasquare’ G, Radicati Di Brozolo F, Villari L (1976) Evolution of the volcanism in the area of interaction between the arabian, anatolian and iranian plates (Lake van, Eastern Turkey). J Volcanol Geoth Res 1(2):103-112
  • 26. Jacobsen BH (1987) Case for upward continuation as a standard separation filter for potential-field maps. Geophysics 52(8):1138-1148. https://doi.org/10.1190/1.1442378
  • 27. Keating P (1998) Weighted Euler deconvolution of gravity data. Geophysics 63(5):1595-1603
  • 28. Keskin M (2003) Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophys Res Lett 30:8046. https://doi.org/10.1029/2003GL018019
  • 29. Kipfer R, Aeschbach-Hertig W, Baur H, Hofer M, Imboden DM, Signer P (1994) Injection of mantle type Helium into Lake Van (Turkey). The clue for quantifying deep water renewal. Earth Planet Sci Lett 125:357-370
  • 30. Koenderink J (1990) Solid shape. MIT Press, Cambridge, p 699
  • 31. Kumar U, Narayan S, Pal S (2020) Structural and tectonic interpretation of EGM2008 gravity data around the Laccadive ridge in the Western Indian Ocean: an implication to continental crust. Geocarto Int 1-20
  • 32. Lahn E (1948) Türkiye Göllerinin Jeolojisi ve Jeomorfolojisi Hakkinda Bir Etüt. M.T.A Press, Ankara, p 87
  • 33. Li X (2015) Curvature of a geometric surface and curvature of gravity and magnetic anomalies. Geophysics 80(1):G15-G26
  • 34. Li Y, Yang Y (2011) Gravity data inversion for the lithospheric density structure beneath North China Craton from EGM 2008 model. Phys Earth Planet Inter 189(1-2):9-26
  • 35. Li Y, Yang Y, Kusky T (2011) Lithospheric structure in the North China craton constrained from Gravity Field Model (EGM 2008). J Earth Sci 22(2):260-272
  • 36. Lisle R, Toimil N (2007) Defining folds on three-dimensional surfaces. Geology 35(6):519
  • 37. Miller HG, Singh V (1994) Potential field tilt-a new concept for location of potential field sources. J Appl Geophys 32:213-217
  • 38. Nabighian MN (1972) The analytic signal of two dimensional magnetic bodies with polygonal crosssection: its properties and use for automated anomaly interpretation. Geophysics 37:507-517
  • 39. Oruc B (2010) Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozakli-Central Anatolia Region, Turkey. Pure Appl Geophys 168(10):1769-1780. https:// doi.org/10.1007/s00024-010-0211-0
  • 40. Oruę B (2011) Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozakli-Central Anatolia Region, Turkey. Pure Appl Geophys 168:1769-1780. https://doi. org/10.1007/s00024-010-0211-0
  • 41. Oruę B, Keskinsezer A (2008) Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure Appl Geophys 165:1913-1927
  • 42. Oruę B, Sönmez T (2017) The rheological structure of the lithosphere in the eastern Marmara Region, Turkey. J Asian Earth Sci 139:183-191
  • 43. Oruę B, Gomez-Ortiz D, Petit C (2017) Lithospheric flexural strength and effective elastic thicknesses of the eastern Anatolia (Turkey) and surrounding region. J Asian Earth Sci 150:1-13
  • 44. Oruę B, Ulutag E, Pamukęu O, Haluk Selim H, Sönmez T (2019) Rheological stratification and spatial variations in the effective elastic thickness of the lithosphere underneath the central Anatolian region, Turkey. J Asian Earth Sci 176:1-7
  • 45. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. https://doi.org/10.1029/ 2011JB008916
  • 46. Phillips JD (2000) Locating magnetic contacts: a comparison of the horizontal gradient, analytic signal, and local wavenumber methods: Society of Exploration Geophysicists, Expanded Abstracts, 2000 Technical Program, vol 1, pp 402-405
  • 47. Phillips JD, Hansen RO, Blakely RJ (2007) The use of curvature in potential-field interpretation. Explor Geophys 38(2):111-119. https://doi.org/10.1071/EG07014
  • 48. Pratt JH (1855) On the attraction of the Himalaya mountains and of the elevated regions beyond them upon the Plump-line in India. Philos Trans R Soc Lond 145:53
  • 49. Rajagopalan S, Milligan P (1995) Image enhancement of aeromagnetic data using automatic gain control. Explor Geophys 25:173-178
  • 50. Reid AB, Allsop JM, Granser H, Millett AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55(1):80-91
  • 51. Roberts A (2001) Curvature attributes and their applications to 3D interpreted horizons. First Break 19(2):85-100. https://doi.org/ 10.1046/j.0263-5046.2001.00142.x
  • 52. Roest WR, Verhoef J, Pilkington M (1992) Magnetic interpretation using the analytic signal. Geophysics 57:116-125
  • 53. Slotnick MM (1932) Curvature of equipotential surfaces. AAPG Bull 16:1250-1259
  • 54. Sumita M, Schmincke H-U (2013) Erratum to “Impact of volcanism on the evolution of Lake Van II: temporal evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia) during the past ca. 0.4 Ma.” J Volcanol Geotherm Res 253:131-133. https://doi. org/10.1016/j.jvolgeores.2013.01.008
  • 55. Şaroğlu F, Yilmaz Y (1984) Dogu Anadolu'nun neotektonigi ve ilgili magmatizmasi. Türkiye Jeol Kur Ketin Simpozyumu Bildiriler Kitabi, pp 149-162
  • 56. Şaroğlu F, Yilmaz Y (1986) Dogu Anadolu’da Neotektonik Donemdeki Jeolojik Evrim ve Havza Modelleri, MTA Genel Müdürlügü, Jeoloji Etutleri Dairesi, Ankara (in Turkish)
  • 57. Şaroğlu F, Yilmaz Y (1987) Dogu Anadolu’da neotektonik dönemdeki jeolojik evrim ve havza modelleri. MTA Derg 107:73-94
  • 58. Şaroğlu F, Güner Y (1987) Initiation of the neomagmatism in East Anatolia. Tectonophysics 134:177-199
  • 59. Şengör AMC (1979) The north Anatolian transform fault; its age, offset and tectonic significance. J Geol Soc Lond 136:269-282
  • 60. Şengör AMC, Kidd WSF (1979) Post collisional tectonics of the Turkish Iranian plateau and a comparison with Tibet. Tectonophysics 55:361-376
  • 61. Şengör AMC, White GW, Dewey JF (1979) Tectonic evolution of the Bitlis suture, Southeastern Turkey; implications for the tectonics of Eastem Mediterranean. Rapp Comm Int Mer Medit 25(26):95-97
  • 62. Şengör AMC (1980) Türkiye’nin neotektoniginin esaslari. Türkiye Jeoloji Kur Yayini, 42 s
  • 63. Şengör AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181-241
  • 64. Thurston JB, Smith RS (1997) Automatic conversion of magnetic data to depth, dip and susceptibility contrast using the SPI™ method. Geophysics 62:807-813
  • 65. Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47(1):31-37
  • 66. Üner S, Yegilova ę, Yakupoglu T, Üner T (2010) Pekigmemig sediman-larda depremlerle olugan deformasyon yapilari (sismitler): Van Gölü Havzasi. Dogu Anadolu Yerbilimleri 31(1):53-66
  • 67. Wijns C, Perez C, Kowalczyk P (2005) Theta Map: Edge detection in magnetic data. Geophysics 70(4):L39-L43. https://doi.org/10. 1190/1.1988184
  • 68. Williams SE, Fairhead JD, Flanagan G (2005) Comparison of grid Euler deconvolution with and without 2D constraints using a realistic 3D magnetic basement model. Geophysics 70(3):L13-L21. https://doi.org/10.1190/1.1925745
  • 69. Verduzco B, Fairhead JD, Green CM, Mackenzie C (2004) New insights into magnetic derivatives. Lead Edge 22:116-119. https:// doi.org/10.1190/1.1651454
  • 70. Yadav K, Sircar A (2021) Modelling of earth’s geothermal subtle traps using gravity Euler deconvolution. Model Earth Syst Environ 7(4):2769-2777
  • 71. Yilmaz Y (1984) Türkiye’nin jeolojik tarihinde magmatik etkinlik ve tektonik evrimle iligkisi: Türkiye Jeoloji Kur. Ketin Simpozyumu Bildiriler Kitabi, 63-81
  • 72. Zeng H, Xu D, Tan H (2007) A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China. Geophysics 72(4):I45-I50
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-150bdbc9-9c2f-42f7-859c-8e9d8deb8c53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.