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EXISTENCE OF CRITICAL ELLIPTIC SYSTEMS
WITH BOUNDARY SINGULARITIES

Jianfu Yang and Yimin Zhou

Communicated by Vicentiu D. Radulescu

Abstract. In this paper, we are concerned with the existence of positive solutions of the
following nonlinear elliptic system involving critical Hardy-Sobolev exponent

−∆u = 2α
α+β

uα−1vβ

|x|s − λup in Ω,

−∆v = 2β
α+β

uαvβ−1

|x|s − λvp in Ω,

u > 0, v > 0 in Ω,

u = v = 0 on ∂Ω,

(∗)

where N ≥ 4 and Ω is a C1 bounded domain in RN with 0 ∈ ∂Ω. 0 < s < 2, α+β = 2∗(s) =
2(N−s)
N−2

, α, β > 1, λ > 0 and 1 < p < N+2
N−2

. The case when 0 belongs to the boundary of Ω is
closely related to the mean curvature at the origin on the boundary. We show in this paper
that problem (∗) possesses at least a positive solution.
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1. INTRODUCTION

In this paper, we are concerned with the existence of positive solutions of the following
nonlinear elliptic system involving critical Hardy-Sobolev exponent

−∆u = 2α
α+β

uα−1vβ

|x|s − λup in Ω,

−∆v = 2β
α+β

uαvβ−1

|x|s − λvp in Ω,

u > 0, v > 0 in Ω,

u = v = 0 on ∂Ω,

(1.1)

where N ≥ 4 and Ω is a C1 bounded domain in RN with 0 ∈ ∂Ω. We assume in this
paper that 0 < s < 2, α+ β = 2∗(s) = 2(N−s)

N−2 , α, β > 1, λ > 0 and 1 < p < N+2
N−2 .
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For the one equation case, the problem is related to the Caffarelli-Kohn-Nirenberg
inequalities. It was discussed in [3] the existence of a minimizer of the best constant
of the Caffarelli-Kohn-Nirenberg inequalities and related subject. In particular, it was
shown that if 0 ∈ Ω, the best Hardy-Sobolev constant

µ2∗(s),s(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2dx( ∫
Ω

u2∗(s)

|x|s dx
) 2

2∗(s)
, (1.2)

is never attained unless Ω = RN and µ2∗(s),s(Ω) = µ2∗(s),s(RN ). If s = 0, it is the
best Sobolev constant

S = S(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2dx( ∫
Ω

|u|2∗ dx
) 2

2∗
,

where 2∗ = 2N
N−2 is the critical Sobolev exponent and S is achieved if and only if

Ω = RN , see [13].
In contrast with the case 0 ∈ Ω, if 0 ∈ ∂Ω the problem is closely related to the

properties of the curvature of ∂Ω at 0. Ghoussoub and Kang showed in [5] that there
exists a solution of the problem

−∆u =
u2∗(s)−1

|x|s
+ λup, u > 0 in Ω, u = 0 on ∂Ω,

where λ > 0, 1 < p < N+2
N−2 , 0 ∈ ∂Ω and the mean curvature of ∂Ω at 0 is nega-

tive. Since the quantities ‖∇u‖L2(RN ) and
∫
RN
|u|2
∗(s)

|x|s dx are invariant under scaling

u(x)→ r
N−2

2 u(rx), the limiting problem of this equation is equivalent to the attain-
ability of (1.2). The existence results of (1.3) were proved in [5] by the global com-
pactness method. Moreover, Ghoussonb and Robert in [6] have proved that µ2∗(s),s(Ω)
is achieved if 0 ∈ ∂Ω. In [9], Hsai et al. use the blow-up method to prove that the
following elliptic equation involving two critical exponents

−∆u =
u2∗(s)−1

|x|s
+ λu

N+2
N−2 , u > 0 in Ω, u = 0 on ∂Ω (1.3)

possesses at least a positive solution.
In this paper, we deal with the exsistence of positive solutions of system (1.1).

In [10], He and the first author have proved the existence of positive solutions of the
problem (1.1) in non-contractible domains if λ = 0 and s = 0. In [14], the existence
of sign-changing solutions was obtained for (1.1) with s = 0. Further results for the
system we refer to the references in [10] and [14]. In (1.1), it involves the Hardy
potential, that is s 6= 0, and the lower order terms are negative, which will push the
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energy up. We will prove that problem (1.1) possesses at least a positive solution by
the blow up argument. The limiting problem after blowing up is as follows:

−∆u = 2α
α+β

uα−1vβ

|x|s in RN+ ,

−∆v = 2β
α+β

uαvβ−1

|x|s in RN+ ,

u > 0, v > 0 in RN+ ,

u = v = 0 on ∂RN+ .

(1.4)

Denote

µα,β,s(Ω) = inf
(u,v)∈(H1

0 (Ω))2\{0}

∫
Ω

(|∇u|2 + |∇v|2)dx( ∫
Ω

uαvβ

|x|s dx
) 2

2∗(s)
(1.5)

for a domain Ω ⊂ RN . The solution of (1.4) will be obtained by showing that
µα,β,s(RN+ ) is achieved. The minimizer of µα,β,s(RN+ ) is the least energy solution of
(1.4) up to a constant. It was observed in [1] that µα,β,s(Ω) and µα+β,s(Ω) are closely
related. Precisely, we have

µα,β,s(Ω) =

[(
α

β

) β
α+β

+

(
α

β

) −α
α+β
]
µα+β,s(Ω)

for α + β ≤ 2∗. Moreover, if w0 realizes µα+β,s(Ω), then u0 = Aw0 and v0 = Bw0

realizes µα,β,s(Ω) for any real constants A and B such that A
B =

√
α
β .

In the case Ω = RN+ , it was proved in [6] that µ2∗(s),s(RN+ ) is achieved by a function
u ∈ H1

0 (RN+ ). This implies that µα,β,s(RN+ ) is achieved if α+ β = 2∗(s). Hence, there
exists a least energy entire solution of system (1.4).

To deal with (1.1), we consider a related subcritical problem, and obtain a sequence
of solutions of the subcritical problems. Then, we analyse the blow up behavior of the
approximating sequence. Since the coefficient of lower order terms are negative, the
energy of the corresponding functional becomes larger, it makes it difficult to find the
upper compact bound. Our main result is as follows.

Theorem 1.1. Suppose that the mean curvature of ∂Ω at 0 is negative, then system
(1.1) has at least a positive solution.

In Section 2, we find a suitable upper bound for the mountain pass level, then
using this bound and the blow-up argument, we prove Theorem 1.1 in Section 3.

2. EXISTENCE OF POSITIVE SOLUTION IN Ω

We establish the upper bound for the mountain pass level. We recall that by [6],
µ2∗(s),s(RN+ ) is achieved by a function u ∈ H1

0 (RN+ ). This implies that µα,β,s(RN+ ) is
achieved if α+ β = 2∗(s). Hence, there exists a least energy entire solution of system
(1.4). Furthermore, it was shown in [12] that the following result holds.



376 Jianfu Yang and Yimin Zhou

Lemma 2.1. Let u ∈ H1
0 (RN+ ) be an entire solution of the equation{
−∆u = u2∗(s)−1

|y|s in RN+ ,
u > 0 in RN+ , u = 0 on ∂RN+ .

(2.1)

Then there is a constant C such that |u(y)| ≤ C(1 + |y|)1−N and |∇u(y)| ≤
≤ C(1 + |y|)−N .

Therefore, each component of the least energy solution of (1.4) enjoys the same
properties in Lemma 2.1. It was proved in [5] that the following result holds.

Lemma 2.2. If N ≥ 4, then we have

1 < µ2∗(s),s(RN ) < µ2∗(s),s(RN+ ).

We remark that Lemma 2.2 implies µα,β,s(RN+ ) > 1. Indeed, since

µα,β,s(RN+ ) =

[(
α

β

) β
α+β

+

(
α

β

) −α
α+β
]
µα+β,s(RN+ )

where α, β > 1, by Lemma 2.2 we have µα+β,s(RN+ ) > 1, and it is easily to verify that
(αβ )

β
α+β + (αβ )

−α
α+β > 1.

The energy functional for (1.1) is well defined on H1
0 (Ω) by

Iλ(u, v) =

∫
Ω

(
1

2
|∇u|2 +

1

2
|∇v|2 − 2

2∗(s)

uαvβ

|x|s
+

λ

p+ 1
up+1 +

λ

p+ 1
vp+1

)
dx.

It is well known that to find positive solutions of problem (1.1) is equivalent to find-
ing nonzero critical points of functional Iλ in H1

0 (Ω) × H1
0 (Ω). Now, we bound the

mountain pass level for the functional Iλ.

Lemma 2.3. Suppose that Ω is a C1 bounded domain in RN with 0 ∈ ∂Ω, ∂Ω is C2

at 0. If the mean curvature of ∂Ω at 0 is negative and 1 ≤ p < N
N−2 . Then there exist

nonnegative functions u0 and v0 in H1
0 (Ω) \ {0} such that Iλ(u0, v0) < 0 and

max
0≤t≤1

Iλ(tu0, tv0) < 2
−2

2∗(s)−2

(
1

2
− 1

2∗(s)

)
µα,β,s(RN+ )

2∗(s)
2∗(s)−2 .

Proof. Let (u, v) be the minimizer of µα,β,s(RN+ ) such that∫
RN+

|∇u|2dx+

∫
RN+

|∇v|2dx = µα,β,s(RN+ ),

∫
RN+

uαvβ

|x|s
dx = 1.

Then, there exist A, B ∈ R such that u = Aw, v = Bw with A
B =

√
α
β , where w is

a minimizer of µ2∗(s),s(RN+ ). Since

|w(x)| ≤ C(1 + |x|)1−N , |∇w(x)| ≤ C(1 + |x|)−N ,
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we obtain
|u(x)| ≤ C(1 + |x|)1−N , |∇u(x)| ≤ C(1 + |x|)−N (2.2)

and
|v(x)| ≤ C(1 + |x|)1−N , |∇v(x)| ≤ C(1 + |x|)−N . (2.3)

Moreover, (u, v) satisfies

−∆u = α
α+βµα,β,s(R

N
+ )u

α−1vβ

|x|s , −∆v = β
α+βµα,β,s(R

N
+ )u

αvβ−1

|x|s in RN+ .
(2.4)

Without loss of generality, we may assume that in a neighborhood of 0, the
boundary ∂Ω can be represented by xN = ϕ(x′), where x′ = (x1, . . . xN−1),
ϕ(0) = 0, ∇′ϕ(0) = 0, ∇′ = (∂1, . . . , ∂N−1) and the outward normal of ∂Ω at 0
is −eN = (0, 0, . . . ,−1). Define

ψ(x) = (x′, xN − ϕ(x′)).

We choose a small positive number r0 so that there exist neighborhoods U and Ũ of 0,
such that ψ(U) = Br0(0), ψ(U ∩ Ω) = B+

r0(0), ψ(Ũ) = B r0
2

(0), ψ(Ũ ∩ Ω) = B+
r0
2

(0).
For ε > 0, we define

ũε(x) = ε−
N−2

2 η(x)u

(
ψ(x)

ε

)
= η(x)uε, ṽε(x) = ε−

N−2
2 η(x)v

(
ψ(x)

ε

)
= η(x)uε,

where η ∈ C∞0 (U) is a positive cut-off function with η ≡ 1 in Ũ . In what follows, we
estimate each term in Iλ(tũε, tṽε). Apparently,∫

Ω

|∇ũε|2 dx =

∫
Ω

(|∇η|2u2
ε + η2|∇uε|2 + 2∇η∇uεηuε) dx.

Since ∫
Ω

ηuε∇η∇uε dx = −
∫
Ω

|∇η|2u2
ε dx−

∫
Ω

∇ηη∇uεuε dx−
∫
Ω

η(∆η)|uε|2 dx,

we obtain ∫
Ω

|∇ũε|2 dx =

∫
Ω∩U

η2|∇uε|2 dx−
∫

Ω∩U

η(∆η)|uε|2 dx.

By the change of the variable y = ψ(x)
ε ∈ B+

r0
ε

(0) and (3.1), (3.2), we obtain∣∣∣∣ ∫
Ω∩U

η(∆η)u2
ε dx

∣∣∣∣ ≤ Cε2

∫
B+
r0
ε

(0)\B+
r0
2ε

(0)

η(ψ−1(εy))
∣∣∆η(ψ−1(εy))

∣∣u2(y) dy =

= O(ε2)
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and ∫
Ω∩U

η2|∇uε(x)|2 dx = ε2−N
∫

B+
r0
ε

η2(ψ−1(εy))|∇xu(y)|2εNdy.

Since

|∇xu(y)|2 =
1

ε2
|∇yu(y)|2 − 2

ε3
∂Nu(y)∇′u(y)∇′[ϕ(εy′)] +

1

ε4
[∂Nu(y)]2(∇′[ϕ(εy′)])2,

we deduce that∫
B+
r0
ε

η2(ψ−1(εy))|∇xu(y)|2ε2 dy ≤

≤
∫
RN+

|∇yu(y)|2dy − 2

∫
B+
r0
ε

η2(ψ−1(εy))∂Nu(y)∇′u(y)(∇′ϕ)(εy′) dy+

+

∫
B+
r0
ε

η2(ψ−1(εy))|∂Nu(y)|2|(∇′ϕ)(εy′)|2 dy = I1 + I2 + I3.

(2.5)

Using the facts

|∇′ϕ(y′)| = O(|y′|), ϕ(y′) =

N−1∑
i=1

αiy
2
i + o(1)(|y′|2),

(2.2) and (2.3), we see that

I3 ≤ C
∫
RN

(1 + |y|)−2N |εy|2 dy = O(ε2).

Integrating by parts, we infer that

I2 =
4

ε

∫
B+
r0
ε

η(ψ−1(εy))∇′η(ψ−1(εy))∂Nu(y)∇′u(y)ϕ(εy′)dy+

+
2

ε

∫
B+
r0
ε

η2(ψ−1(εy))∇′∂Nu(y)∇′u(y)ϕ(εy′)dy+

+
2

ε

∫
B+
r0
ε

η2(ψ−1(εy))∂Nu(y)

N−1∑
i=1

∂iiu(y)ϕ(εy′)dy = I21 + I22 + I23.
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By (2.2) and (2.3),

|I21| ≤ Cε2

∫
B+
r0
ε

(0)\B r0
2ε

(0)

(1 + |y|)−2N |y|2 dy ≤ CεN .

In the same way, I22 = O(εN ). By (2.4),

N−1∑
i=1

∂iiu(y) = ∆u− ∂NNu(y) = − α

α+ β
µα,β,s(RN+ )

uα−1vβ

|y|s
− ∂NNu(y).

Therefore,

I23 = −2

ε

∫
B+
r0
ε

η2(ψ−1(εy))∂Nu(y)
α

α+ β
µα,β,s(RN+ )

uα−1vβ

|y|s
ϕ(εy′) dy−

− 2

ε

∫
B+
r0
ε

η2(ψ−1(εy))∂Nu(y)∂NNu(y)ϕ(εy′)dy := F1 + F2.

Since u = Aw,

F1 = −C0

ε

∫
B+
r0
ε

η2(ψ−1(εy))
∂Nw(y)2∗(s)

|y|s
ϕ(εy′) dy,

where C0 = 2α
(2∗(s))2µα,β,s(R

N
+ )AαBβ . Integrating by parts, we obtain

F1 =
C0

ε

∫
B+
r0
ε

2η(ψ−1(εy))∂Nη(ψ−1(εy))ϕ(εy′)

|y|s
w2∗(s) dy+

+
C0

ε

∫
B+
r0
ε

η2(ψ−1(εy))∂Nϕ(εy′)

|y|s
w2∗(s) dy−

− C0s

ε

∫
B+
r0
ε

η2(ψ−1(εy))ϕ(εy′)yN
|y|s+2

w2∗(s) dy = F11 + F12 + F13.

We may verify as above that

F11 = O(ε
N2−N−Ns+2

N−2 ), F12 = O(ε
N2−N−Ns+2

N−2 ).
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Now, we estimate F2. Integrating by parts, we deduce

F2 =
1

ε

∫
B+
r0
ε

∂N [η2(ψ−1(εy))ϕ(εy′)](∂Nu)2 dy+

+
1

ε

∫
B+
r0
ε

∩∂RN+

η2(ψ−1(εy))ϕ(εy′)(∂Nu)2νN dSy =

=
1

ε

∫
B+
r0
ε

2η(ψ−1(εy))∂N [η(ψ−1(εy))]ϕ(εy′)(∂Nu)2 dy+

+
1

ε

∫
B+
r0
ε

η2(ψ−1(εy))∂N [ϕ(εy′)](∂Nu)2dy+

+
1

ε

∫
B+
r0
ε

∩∂RN+

η2(ψ−1(εy))ϕ(εy′)(∂Nu)2 dSy =

= F21 + F22 + F23.

It can be shown that F21 = O(εN−1), F22 = O(εN−1). Hence,

I2 = F13 + F23 +O(εN−1).

Since η(ψ−1(εy)) ≡ 1 in B+
r0
2ε

, we have

F13 = −C0s

ε

∫
B+
r0
ε

\B+
r0
2ε

η2(ψ−1(εy))ϕ(εy′)yN
|y|s+2

w2∗(s) dy−

− C0s

ε

∫
B+
r0
2ε

ϕ(εy′)yN
|y|s+2

w2∗(s) dy = J1 + J2.

We have

J1 ≤ Cε
∫

B+
r0
ε

\B+
r0
2ε

|y|3(1 + |y|)(1−N)2∗(s)

|y|s+2
dy ≤ Cε

N(N−s)
N−2 .
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In the same way,

J2 = −C0s

ε

∫
RN+

ϕ(εy′)yN
|y|s+2

w2∗(s) dy − C0s

ε

∫
RN+ \B

+
r0
ε

ϕ(εy′)yN
|y|s+2

w(y)2∗(s)dy =

= −C0s

ε

∫
RN+

ϕ(εy′)yN
|y|s+2

w2∗(s)dy +O(ε
N(N−s)
N−2 ) =

= −εC0s

N−1∑
i=1

αi

∫
RN+

y2
i yNw(y)2∗(s)

|y|s+2
dy(1 + o(1)) +O(ε

N(N−s)
N−2 ) =

= − sεc1
N − 1

∫
RN+

|y′|2yNw(y)2∗(s)

|y|s+2
dy

N−1∑
i=1

αi(1 + o(1)) +O(ε
N(N−s)
N−2 ) =

= −C0K1H(0)(1 + o(1))ε+O(ε
N(N−s)
N−2 ),

where

H(0) =
1

N − 1

N−1∑
i=1

αi, K1 = s

∫
RN+

|y′|2yNw2∗(s)

|y|s+2
dy.

Similarly,

F23 =
1

ε

∫
(B+

r0
ε

\B+
r0
2ε

)∩∂RN+

η2(ψ−1(εy))ϕ(εy′)(∂Nu(y))2 dSy+

+
1

ε

∫
B+
r0
2ε

∩∂RN+

ϕ(εy′)(∂Nu(y))2 dSy = L1 + L2.

There holds

L1 ≤
C

ε

∫
{ r02 <|εy′|≤r0}

|(∂Nu)(y′, 0)|2|ϕ(εy′)| dy′ ≤

≤ Cε
∫

{ r02 <|εy′|≤r0}

|y′|−2N+2 dy′ = O(εN ).

Using the fact ∫
RN−1\(B+

r0
2ε

∩∂RN+ )

ϕ(εy′)(∂Nu(y))2 dSy = O(εN ),
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one finds

L2 =
1

ε

∫
RN−1

ϕ(εy′)(∂nu(y))2 dSy −
1

ε

∫
RN−1\(B+

r0
2ε

∩∂RN+ )

ϕ(εy′)(∂Nu(y))2 dSy =

=
1

ε

∫
RN−1

ϕ(εy′)(∂Nu(y))2dSy +O(εN−1) =

= ε

N−1∑
i=1

αi

∫
RN−1

[(∂Nu)(y′, 0)]2y2
i dy
′(1 + o(1)) +O(εN−1) =

= K2H(0)(1 + o(1))ε+O(εN−1),

where K2 =
∫

RN−1

|(∂Nu)(y′, 0)|2|y′|2 dy′. Consequently,

∫
Ω

|∇ũε|2 dx =

∫
RN+

|∇u|2 dy − (C0K1 −K2)H(0)(1 + o(1))ε+O(ε2),

and similarly,∫
Ω

|∇ṽε|2 dx =

∫
RN+

|∇v|2 dy − (C1K1 −K2)H(0)(1 + o(1))ε+O(ε2).

where C1 = 2β
(2∗(s))2µα,β,s(R

N
+ )AαBβ .

Next, let y = ψ(x)
ε . We estimate

∫
Ω

ũαε ṽ
β
ε

|x|s
dx ≥

∫
Ω∩Ũ

ũαε ṽ
β
ε

|x|s
dx =

∫
Ω∩Ũ

uαε v
β
ε

|x|s
dx =

∫
B+
r0/2
ε

uα(y)vβ(y)

|ψ
−1(εy)
ε |s

dy,

since η ≡ 1 in Ω ∩ Ũ . The facts

1

|φ
−1(εy)
ε |s

=
1

|y|s

(
1− syNϕ(εy′)

ε|y|2
− sϕ2(εy′)

2ε2|y|2

)
+

1

|y|s
O

((2yNϕ(εy′)

ε|y|2
+
ϕ2(εy′)

ε2|y|2
)2
)

and ∫
RN+ \B

+
r0
2ε

uαvβ

|y|s
dy = O(ε

N(N−s)
N−2 )
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enable us to show that∫
Ω∩Ũ

ũαε ṽ
β
ε

|x|s
dx =

∫
B+
r0
2ε

uαvβ

|y|s
dy − s

ε

∫
B+
r0
2ε

yNϕ(εy′)uα(y)vβ(y)

|y|s+2
dy +O(ε2) =

=

∫
RN+

uαvβ

|y|s
dy − s

ε

∫
B+
r0
2ε

yNϕ(εy′)uαvβ

|y|s+2
dy +O(ε2).

Moreover,

− s

ε

∫
B+
r0
2ε

yNϕ(εy′)uαvβ

|y|s+2
dy = −s

ε
AαBβ

∫
B+
r0
2ε

yNϕ(εy′)w2∗(s)

|y|s+2
dy =

= −sε
N−1∑
i=1

αiA
αBβ

∫
RN+

yNy
2
iw

2∗(s)

|y|s+2
dy(1 + o(1)) +O(ε

N(N−s)
N−2 ) =

= − sε

N − 1
AαBβ

∫
RN+

yN |y′|2w2∗(s)

|y|s+2
dy

N−1∑
i=1

αi(1 + o(1)) +O(ε
N(N−s)
N−2 ).

Hence, ∫
Ω∩Ũ

ũαε ṽ
β
ε

|x|s
dx =

∫
RN+

uαvβ

|y|s
dy −K3H(0)(1 + o(1))ε+O(ε2),

where K3 = sAαBβ
∫
RN+

yN |y′|2w2∗(s)

|y|s+2 dy = AαBβK1.

Finally, let y = ψ(x)
ε ∈ B+

r0
ε

(0). We deduce that

∫
Ω

ũp+1
ε dx = ε

(2−N)(p+1)
2

∫
Ω∩U

η2(x)

[
u

(
ψ(x)

ε

)]p+1

dx =

= ε
(2−N)(p+1)

2 +N

∫
B+
r0
ε

up+1 dy =

= ε
N+2

2 −
(N−2)p

2

∫
RN+

up+1 dy +O(ε
N(p+1)

2 ).

Similarly, ∫
Ω

ṽp+1
ε dx = ε

N+2
2 −

(N−2)p
2

∫
RN+

vp+1 dy +O(ε
N(p+1)

2 ).
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Since q < N
N−2 ,

N+2
2 − (N−2)p

2 > 1. For t ≥ 0, we have

Iλ(tũε, tṽε) =
t2

2

( ∫
RN+

|∇u|2 dy +

∫
RN+

|∇v|2 dy
)
− 2t2

∗(s)

2∗(s)

∫
RN+

uαvβ

|y|s
dy+

+
H(0)

2

[
(2K2 − C0K1 − C1K1)t2 +

4

2∗(s)
(K3 + o(1))t2

∗(s)

]
ε+O(ε2)=

= f1(t) +
H(0)

2
εf2(t) +O(ε2),

where

f1(t) =
t2

2
µα,β,s(RN+ )− 2t2

∗(s)

2∗(s)
.

We may verify that

max
0≤t≤1

f1(t) = f1(t0) = 2
−2

2∗(s)−2

(
1

2
− 1

2∗(s)

)
µα,β,s(RN+ )

2∗(s)
2∗(s)−2 ,

with t0 = ( 1
2µα,β,s(R

N
+ ))

1
2∗(s)−2 . Since K1 > 0,

f2(t0) = (2K2 − C0K1 − C1K1)t20 +
4

2∗(s)
K3t

2∗(s)
0 =

=

(
2K2 −

2

2∗(s)
AαBβK1

)
t20 +

4

2∗(s)
AαBβK1t

2∗(s)
0 =

= 2K2t
2
0 +

4

2∗(s)
AαBβK1

(
1− 1

µα,β,s(RN+ )

)
t
2∗(s)
0 .

f2(t0) > 0 if and only if µα,β,s(RN+ ) > 1.
Since H(0) < 0, by choosing T large enough, we have Iλ(T ũε, T ṽε) < 0 for t ≥ T

and ε ≥ 0 small. Let u0 = T ũε, v0 = T ṽε. We obtain

max
0≤t≤1

Iλ(tu0, tv0) < 2
−2

2∗(s)−2

(
1

2
− 1

2∗(s)

)
µα,β,s(RN+ )

2∗(s)
2∗(s)−2

and
Iλ(u0, v0) < 0.

This completes the proof of Lemma 2.1.

3. EXISTENCE OF POSITIVE SOLUTION IN Ω

Now we will use the blow up argument to prove Theorem 1.1.
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For any ε > 0, by applying Lemma 2.1 and the mountain pass theorem, we have
a positive solution pair (uε, vε) of the following subcritical system

−∆uε = 2α
α+β−ε

uα−1
ε vβ−εε

|x|s − λup−εε in Ω,

−∆vε = 2β
α+β−ε

uαε v
β−1−ε
ε

|x|s − λvp−εε in Ω,

uε > 0, vε > 0 in Ω,
uε = vε = 0 on ∂Ω.

(3.1)

The mountain pass level cε of (3.1) satisfies

cε = Iελ(uε, vε) < 2
−2

2∗(s)−2

(
1

2
− 1

2∗(s)

)
µα,β,s(RN+ )

2∗(s)
2∗(s)−2 , (3.2)

where

Iε(uε, vε) =

∫
Ω

(
1

2
|∇uε|2 +

1

2
|∇vε|2 −

2

2∗(s)− ε
uαε v

β−ε
ε

|x|s

)
dx+

+

∫
Ω

(
λ

p+ 1− ε
up+1−ε
ε +

λ

p+ 1− ε
vp+1−ε
ε

)
dx.

It can be easily shown that both ‖uε‖H1
0 (Ω) and ‖vε‖H1

0 (Ω) are uniformly bounded for
ε > 0 small. Thus, there is a subsequence {(uj , vj)} of {(uε, vε)} such that

uj ⇀ u, vj ⇀ v in H1
0 (Ω),

uj → u, vj → v in Lp+1(Ω),

uj ⇀ u, vj ⇀ v in L2∗(s)(Ω, |x|−sdx),

(3.3)

with u, v ≥ 0 and (u, v) is a solution of system (1.1). If (u, v) is a nontrivial solution,
by the strong maximum principle, u, v > 0, then we are done.

Now, we prove (u, v) is nontrivial. It will be shown by the blowing up argument.
Suppose on the contrary that u = v = 0 in Ω. Let

Mj = uj(xj) = max
Ω̄

uj(x), Nj = vj(yj) = max
Ω̄

vj(x).

Then, we have either mj → ∞ or nj → ∞ as j → ∞. Indeed, on the contrary we
would have mj ≤ C and nj ≤ C for a positive constant C. By the Sobolev embedding,∫

Ω

uαj v
β−εj
j

|x|s
dx ≤ C

∫
Ω

uαj
|x|s

dx→ 0

as j →∞. This implies∫
Ω

(|∇uj |2 + |∇vj |2) dx = 2

∫
Ω

uαj v
β−εj
j

|x|s
dx− λ

∫
Ω

u
p+1−εj
j dx− λ

∫
Ω

v
p+1−εj
j dx→ 0,
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that is, uj → 0, vj → 0 strongly in H1
0 (Ω). It yields

0 = lim
j→∞

1

2

∫
Ω

(|∇uj |2 + |∇vj |2)dx = c > 0,

a contradiction.
We will show that Mj = O(1)Nj , and xj → 0, yj → 0 at the same time, which

implies that the origin is the only blow up point. Suppose Nj ≤Mj →∞ and denote

ũj(y) = M−1
j uj(kjy + xj), ṽj(y) = M−1

j vj(kjy + xj), for y ∈ Ωj ,

where kj = M
−

2∗(s)−2−εj
2−s

j , Ωj = {x ∈ RN : xj + kjx ∈ Ω}. Then (ũj , ṽj) satisfies

−∆ũj = 2α
α+β−εj (

kj
|xj | )

s ũα−1
j ṽ

β−εj
j∣∣ xj

|xj |
+

kj
|xj |

x
∣∣s − λk2

jM
p−1−εj
j ũj

p−εj in Ωj ,

−∆ṽj =
2(β−εj)
α+β−εj (

kj
|xj | )

s ũαj ṽ
β−1−εj
j∣∣ xj

|xj |
+

kj
|xj |

x
∣∣s − λk2

jM
p−1−εj
j ṽj

p−εj in Ωj ,

0 ≤ ũj , ṽj ≤ 1, in Ωj ,
ũj = ṽj = 0 on ∂Ωj .

(3.4)

We claim that |xj | = O(kj) and xj → 0 as j →∞. Suppose on the contrary that
lim supj→∞

|xj |
kj

=∞. Since Mj →∞, kj → 0 as j →∞. Furthermore, we have

k2
jM

p−1−εj
j = k

2−
(2−s)(p−εj−1)

2∗(s)−2−εj
j → 0 as j →∞

due to the facts kj → 0 and 2 − (2−s)(p−εj−1)
2∗(s)−2−εj > 0, i.e, p < N+2

N−2 . Because (ũj , ṽj) is

uniformly bounded in C2,α
loc , we may assume that ũj → u, ṽj → v in C2

loc.
Suppose xj → x0 ∈ Ω̄. There are two cases: (i) x0 ∈ Ω or x0 ∈ ∂Ω and

dist(xj ,∂Ω)
kj

→∞; and (ii) x0 ∈ ∂Ω and dist(xj ,∂Ω)
kj

→ σ ≥ 0.
In the case (i), we have Ωj → RN as j →∞ and (u, v) satisfies

−∆u = 0 in RN ,
−∆v = 0 in RN ,
0 ≤ u, v ≤ 1, u(0) = 1.

Furthermore, we have∫
Ωj

ũ
2N
N−2

j dy = k

Nεj
2∗(s)−2−εj
j

∫
Ω

u
2N
N−2

j dx ≤ C, and
∫
Ωj

ṽ
2N
N−2

j dy ≤ C,

which yields ∫
RN

u
2N
N−2 dy <∞,

∫
RN

v
2N
N−2 dy <∞.
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However, by the Liouville theorem, u ≡ v ≡ 1 for x ∈ RN . This is a contradiction.
In the case (ii), after an orthogonal transformation, we have Ωj → RN+ = {x =

(x1, . . . , xN ) | xN > 0} as j →∞ and ũj , ṽj converge to some u, v uniformly in every
compact subset of RN+ . Apparently, u(0) = 1 and 0 ≤ v(0) ≤ 1. Hence, (u, v) satisfies

−∆u = 0 in RN+ ,
−∆v = 0 in RN+ ,
0 ≤ u, v ≤ 1 in RN+ ,
u = v = 0 on ∂RN+ .

By the boundary condition and the maximum principle, u ≡ v ≡ 0 for x ∈ RN+ which
violates u(0) = 1. Consequently, lim supj→∞

|xj |
kj

<∞. Since kj → 0, we have xj → 0

as j →∞.
Next, we show that lim infj→∞

|xj |
kj

> 0. Were it not the case, we would have, up

to a subsequence, that limj→∞
|xj |
kj

= 0. Then (ũj , ṽj) satisfies

−∆ũj = 2α
α+β−εj

ũα−1
j ṽ

β−εj
j

|
xj
kj

+x|s
− λk2

jM
p−1−εj
j ũj

p−εj in Ωj ,

−∆ṽj =
2(β−εj)
α+β−εj

ũαj ṽ
β−1−εj
j

|
xj
kj

+x|s
− λk2

jM
p−1−εj
j ṽj

p−εj in Ωj ,

0 ≤ ũj , ṽj ≤ 1 in Ωj ,
ũj = ṽj = 0 on ∂Ωj .

(3.5)

Up to a rotation, we have Ωj → RN+ and ũj , ṽj converge to some u, v uniformly in
compact subsets of RN+ respectively, where (u, v) satisfies

−∆u = 2α
α+β

uα−1vβ

|y|s in RN+ ,
−∆v = 2β

α+β
uαvβ−1

|y|s in RN+ ,
0 ≤ u, v ≤ 1 in RN+ , u = v = 0 on ∂RN+ .

The boundary condition violates u(0) = 1. Hence, lim infj→∞
|xj |
kj

> 0.
Now, we complete the proof of Theorem 1.1 by showing that problem (1.1) has a

nontrivial solution. We may assume dist(xj ,∂Ω)
kj

→ σ ≥ 0. By an affine transformation,
we find (ũj , ṽj) converges to (u, v) uniformly in any compact subset of RN+ and (u, v)
satisfies 

−∆u = 2α
α+β

uα−1vβ

|y|s in RN+ ,
−∆v = 2β

α+β
uαvβ−1

|y|s in RN+ ,
u, v > 0 in RN+ , u = v = 0 on ∂RN+

(3.6)

with u(0, . . . , σ) = 1. By the definition of µα,β,s(Ω), we have

µα,β,s(Ωj) ≤

∫
Ω

(|∇ũj |2 + |∇ṽj |2) dx( ∫
Ω

ũαj ṽ
β−ε
j

|x|s dx
) 2

2∗(s)

,
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and then

µα,β,s(RN+ ) ≤

∫
RN+

(|∇u|2 + |∇v|2) dy

( ∫
RN+

uαvβ

|y|s dy
) 2

2∗(s)
= 2

( ∫
RN+

uαvβ

|y|s
dy

) 2∗(s)−2
2∗(s)

,

that is, ∫
RN+

(|∇u|2 + |∇v|2) dy = 2

∫
RN+

uαvβ

|y|s
dy ≥ 2

−2
2∗(s)−2µα,β,s(RN+ )

2∗(s)
2∗(s)−2 . (3.7)

Furthermore, noting that

lim
j→∞

∫
Ω

(|∇uj |2 + |∇vj |2) dx = lim
j→∞

k
−

(N−2)εj
2∗(s)−2−εj

j

∫
Ωj

(|∇ũj |2 + |∇ṽj |2) dy ≥

≥ lim
j→∞

∫
Ωj

(|∇ũj |2 + |∇ṽj |2) dy ≥
∫
RN+

(|∇u|2 + |∇v|2) dy, (3.8)

we derive from (3.2), (3.7), (3.8) that

c =

(
1

2
− 1

2∗(s)

)
lim
j→∞

∫
Ω

(|∇uj |2+|∇vj |2) dx ≥
(

1

2
− 1

2∗(s)

)
2

−2
2∗(s)−2µα,β,s(RN+ )

2∗(s)
2∗(s)−2 ,

which yields a contradiction to (3.2). Thus, (u, v) is a nontrivial solution of (1.1).
Now we show Mj = O(Nj). Indeed, since u is nontrivial, so is v. Otherwise, we

would have 
∆u = 0 in RN+ ,
0 ≤ u ≤ 1, u(0, . . . , σ) = 1 in RN+ ,
u = 0 on ∂RN+ .

By the strong maximum principle, u would be a constant because it attains its max-
imum value inside RN+ . This yields a contradiction between u(0, . . . , σ) = 1 and the
boundary condition. Therefore, there exists y0 ∈ RN+ such that v(y0) 6= 0. Hence,

ṽj(y0) = m−1
j vj(xj + kjy0)→ v(y0) > 0

implies

1 ≥ nj
mj
≥ vj(xj + kjy0)

mj
≥ v(y0)− ε > 0

for ε > 0 small and j large, namely, Nj = O(1)Mj as j → ∞. Replacing Mj

by Nj in the above blow up process, we may deduce that |yj | = O(k̃j), where

k̃j = N
−

2∗(s)−2−εj
2−s

j . So we also have yj → 0. Consequently, the origin is the only
blow up point and problem (1.1) has a positive nontrivial solution. The proof of
Theorem 1.1 is complete. �
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