PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Series Expanding of the Ultrasound Transmission Coefficient Through a Multilayered Structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To calculate the transmission coefficient of ultrasonic waves through a multi-layered medium, a new approach is proposed by expanding it into Debye’s series. Using this formalism, the transmission coefficient can be put in the form of resonance terms series. From this point of view, the relative amplitude of the transmitted wave can be considered as an infinite summation of terms taking into account all possible reflections and refractions on each interface. Our model is then used to investigate interaction between the ultrasonic plane wave and the N-plane-layer structure. Obviously, the resulting infinite summation has to be reduced to a finite one, according to some level of accuracy. The numerical estimation of the transmission coefficient using the exact expression (Eq. (1)) is then compared to the one of our method in the case of two or three plane-layer structure. The effect of the order of the finite summation on the calculated value of the transmission coefficient is, as well, studied. Finally, our proposed method may be used, with the decomposition into Gaussian beams of a pressure field created by a circular source, to draw a 3D image of the pressure field transmitted through a multilayered structure.
Rocznik
Strony
71--79
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • Electrical Systems Energetic Efficiency and Telecommunications Laboratory, Cadi Ayyad University Marrakesh, Morocco
  • Electrical Systems Energetic Efficiency and Telecommunications Laboratory, Cadi Ayyad University Marrakesh, Morocco
  • Energy Engineering Materials and Systems Laboratory, Ibn Zohr University Agadir, Morocco
Bibliografia
  • 1. Ainslie M.A. (1995), Plane-wave reflection and transmission coefficients for a three layered elastic medium, The Journal of the Acoustical Society of America, 97(2): 954-961, doi: 10.1121/1.412074.
  • 2. Bakhtiari-Nejad M., Hajj M.R., Shahab S. (2020), Dynamics of acoustic impedance matching layers in contactless ultrasonic power transfer systems, Smart Materials and Structure, 29: 035037, doi: 10.1088/1361-665X/ab6fe5.
  • 3. Chern E.J., Nielsen H.T.C. (1989), Generalized formulas for reflected pulse response of multilayered structures, Journal of Applied Physics, 66(7): 2833-2837, doi: 10.1063/1.344212.
  • 4. Chern E.J., Nielsen H.T.C. (1990), Generalized pulse equations for through-transmission evaluation of arbitrary multilayered structures, Research in Nondestructive Evaluation, 2: 1-9.
  • 5. Conoir J.M., (1991), Interferences and periodic distribution of resonances in an elastic plate [in French: Interférences et périodicités sur les résonances dans une plaque élastique], Journal d’acoustique, 4: 377-412.
  • 6. Derem A. (1982), Series of transmitted waves for a fluid and hollow cylinder: an exact solution [in French: Série des ondes transmises pour un cylindre fluide et creux: une solution exacte], Revue du CETHEDEC, 19(70): 1-27.
  • 7. Derible S., Tinel A. (2011), Resonances of two elastic plates separated by a thickness of water. Study by means of transition terms [in French: Résonances de deux plaques élastiques séparées par une épaisseur d’eau. Etude au moyen des termes de transition], [in:] 20ème Congrès Français de Mécanique Besançon.
  • 8. Deschamps M., Chengwei C. (1991), Reflection/refraction of a solid layer by Debye’s series expansion, Ultrasonics, 29(4): 288-293, doi: 10.1016/0041-624X(91)90024-3.
  • 9. Fiorito R., Madigoskay W., Überall H. (1981), Acoustic resonances and the determination of the material parameters of a viscous fluid layer, The Journal of the Acoustical Society of America, 69(4): 897-903, doi: 10.1121/1.385610.
  • 10. Fiorito R., Überall H. (1979), Resonance theory of acoustic reflection and transmission through a fluid layer, The Journal of the Acoustical Society of America, 65(1): 9-14, doi: 10.1121/1.382275.
  • 11. Folds D.L., Loggins C.D. (1977), Transmission and reflection of ultrasonic waves in layered Media, The Journal of the Acoustical Society of America, 62(5): 1102-1109, doi: 10.1121/1.381643.
  • 12. Gérard A. (1979), Field resulting from the incidence of P or SV waves on an elastic sphere [in French: Champ résultant de l’incidence d’ondes P ou SV sur une sphere élastique], Comptes rendus de l’Académie des Sciences. Série IIb, Mécanique, Elsevier, 289: 237-240.
  • 13. Gérard A. (1980), Field resulting from the incidence of P and SV waves on a stratified medium with spherical symmetry [in French: Champ résultant de l’incidence d’ondes P et SV sur un milieu stratifié à symétrie sphérique], Comptes rendus de l’Académie des Sciences. Série IIb, Mécanique, Elsevier, 290(3): 43-46.
  • 14. Gérard A. (1982), Factorization of the characteristic equation of a multi-layered elastic sphere: interpretation of resonances [in French: Factorisation de l’équation caractéristique d’une sphère élastique multicouches: interprétation des résonances], Comptes rendus de l’Académie des Sciences. Série IIb, Mécanique, Elsevier, 297: 17-19.
  • 15. Gérard A. (1987), Modal formalism: interpretation [in French: Formalisme modal: interprétation], [in:] Diffusion Acoustique [in French: La Diffusion Acoustique], Gespa N., Poirée B. [Eds.], Revue du CETHEDEC, pp. 165-287.
  • 16. Gérard A. (2022), Generalized Debye series theory for acoustic scattering: Some applications, [in:] Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, Visakh P.M. [Ed.], Vol. 89, Springer Singapore, pp. 349-374.
  • 17. Gudra T., Banasiak D. (2020), Optimal selection of multicomponent matching layers for piezoelectric transducers using genetic algorithm, Archives Acoustics, 45(4): 699-707, doi: 10.24425/aoa.2020.135276.
  • 18. Haskell N.A. (1953), The dispersion of surface waves on multilayered media, Bulletin of the Seismological Society of America, 43(1): 17-34, doi: 10.1785/BSSA0430010017.
  • 19. Hsu D.K. (2009), Nondestructive evaluation of sandwich structures: A review of some inspection techniques, Journal of Sandwich Structures and Materials, 11(4): 275-291, doi: 10.1177/1099636209105377.
  • 20. Ingard K.U., Morse P.M. (1968), Theoretical Acoustics, Princeton University Press, Princeton, New Jersey.
  • 21. Khaled A., Maréchal P., Lenoir O., Ech-Cherif El-Kettani M., Chenouni D. (2013), Study of the resonances of periodic plane media immersed in water: Theory and experiment, Ultrasonics, 53(3): 642-647, doi: 10.1016/j.ultras.2012.11.011.
  • 22. Lenoir O., Maréchal P. (2009), Study of plane periodic multilayered viscoelastic media: Experiment and simulation, [in:] 2009 IEEE International Ultrasonics Symposium Proceedings, pp. 1028-1011, doi: 10.1109/ULTSYM.2009.5441518.
  • 23. Lowe M.J.S. (1995), Matrix techniques for modeling ultrasonic waves in multilayered media, [in:] IEEE Transaction of Ultrasonic, Ferroelectric, and Frequency Control, 42(4): 525-542, doi: 10.1109/58.393096.
  • 24. Maréchal P. et al. (2008), Modeling of a high frequency ultrasonic transducer using periodic structures, Ultrasonics, 48(2): 141-149, doi: 10.1016/j.ultras.2007.11.007.
  • 25. Maréchal P., Lenoir O., Khaled A., Ech-Cherif El-Kettani M., Chenouni D. (2014), Viscoelasticity effect on a periodic plane medium immersed in water, Acta Acustica united with Acustica, 100(6): 1036-1043, doi: 10.3813/AAA.918783.
  • 26. Messineo M.G., Frontini G.L., Eliçabe G.E., Gaete-Garretón L. (2013), Equivalent ultrasonic impedance in multilayer media. A parameter estimation problem, Inverse Problems in Science and Engineering, 21(8): 1268-1287, doi: 10.1080/17415977.2012.757312.
  • 27. Messineo M.G., Rus G., Eliçabe G.E., Frontini G.L. (2016), Layered material characterization using ultrasonic transmission: An inverse estimation methodology, Ultrasonics, 65: 315-328, doi: 10.1016/j.ultras.2015.09.010.
  • 28. Nayfeh A.H. (1991), The general problem of elastic wave propagation in multilayered anisotropic media, The Journal of the Acoustical Society of America, 89(4): 1521-1531, doi: 10.1121/1.400988.
  • 29. Potel C., de Belleval J.-F. (1993), Propagation in an anisotropic periodically multilayered medium, The Journal of the Acoustical Society of America, 93(5): 2669-2677, doi: 10.1121/1.405842.
  • 30. Rokhlin S.I., Wang Y.J. (1992), Equivalent boundary conditions for thin orthotropic layer between two solids: Reflection, refraction, and interface waves, The Journal of the Acoustical Society of America, 91(4): 1875-1887, doi: 10.1121/1.403717.
  • 31. Scott W.R., Gordon P.F. (1977), Ultrasonic spectrum analysis for nondestructive testing of layered composite materials, The Journal of the Acoustical Society of America, 62(1): 108-116, doi: 10.1121/1.381491.
  • 32. Shenand M., Cao W. (2000), Acoustic band gap formation in a periodic structure with multilayer unit cells, Journal of Physics D: Applied Physics, 33(10): 1150-1154, doi: 10.1088/00223727/33/10/303.
  • 33. Solyanik F.I. (1977), Transmission of plane waves through a layered medium of anisotropic materials, Soviet Physics Acoustics-USSR, 23: 533-536.
  • 34. Soucrati H., Chitnalah A., Aouzale N., Jakjoud H. (2018), Analytical model of three-dimensional ultrasonic beam interaction with an immersed plate, Archives of Acoustics, 43(4): 669-679, doi: 10.24425/aoa.2018.125160.
  • 35. Storheim E., Lohne K.D., Hergum T. (2015), Transmission and reflection from a layered medium in water. Simulations and measurements, [in:] Proceedings of the 38th Scandinavian Symposium on Physical Acoustics, Norway.
  • 36. Stovas A., Arntsen B. (2006), Vertical propagation of low-frequency waves in finely layered media, Geophysics, 71(3): T87-T94, doi: 10.1190/1.2197488.
  • 37. Yang X., Zhang C., Wang C., Sun A., Ju B.-F., Shen Q. (2019), Simultaneous ultrasonic parameter estimation of a multi-layered material by the PSO-based least squares algorithm using the reflection spectrum, Ultrasonics, 91: 231-236, doi: 1016/j.ultras.2018.08.003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14fbb5b5-2adb-4e3a-bdf3-5e51f1b6221c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.