Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.
Rocznik
Tom
Strony
175--197
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
- Department of Structural Mechanics, Faculty of Civil Engineering Architecture and Environmental Engineering Technical University of Łódź Al. Politechniki 6, 90-924 Łódź, POLAND
autor
- Department of Structural Mechanics, Faculty of Civil Engineering Architecture and Environmental Engineering Technical University of Łódź Al. Politechniki 6, 90-924 Łódź, POLAND
Bibliografia
- [1] Biliszczuk J., Barcik W. and Machelski Cz. (2007): Design of steel footbridges (in Polish). – Wrocław: Dolnośląskie Wydawnictwo Edukacyjne.
- [2] Flaga A. (2011): Bridges for pedestrians (in Polish). – Warsaw: Wydawnictwo Komunikacji i Łączności.
- [3] Charles P. and Hoorpah W. (2006): Technical guide – Footbridges – Assessment of vibrational behaviour of footbridges under pedestrian loading. – Paris: Setra/AFGC.
- [4] Fujino Y. (2002): Vibration, control and monitoring of long-span bridges. Recent research, developments and practice in Japan. – Journal of Constructional Steel Research, vol.58, pp.71-97.
- [5] Fujino Y., Pacheco B.M., Nakamura S.I. and Warnitchai P. (1993): Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge. – Earthquake Engineering and Structural Dynamics, vol.22, pp.741-758.
- [6] Newland D.E. (1993): Radom Vibrations and Spectral Analysis. – Harlow: Longman Group.
- [7] Bathe K.J. (1996): Finite Element Procedures. Englewood Cliffs. – New York: Prentice Hall.
- [8] Hughes T.J.R. (2000): The Finite Element Method - Linear Static and Dynamic Finite Element Analysis. – New York: Dover Publications, Inc.
- [9] Zienkiewicz O.C. and Taylor R.L. (2005): Finite Element Method for Solid and Structural Mechanics. 6th edition. – Amsterdam: Elsevier.
- [10] Clough R.W. and Penzien J. (1975): Dynamics of Structures. – New York: McGraw-Hill.
- [11] Kamiński M. (2005): Computational Mechanics of Composite Materials. Sensitivity, Randomness and Multiscale Behaviour. – London-New York: Springer-Verlag.
- [12] Kleiber M. and Hien T.D. (1992): The Stochastic Finite Element Method. – Chichester: Wiley.
- [13] Bendat J.S. and Piersol A.G. (1971): Random Data: Analysis and Measurement Procedures. – New York: Wiley.
- [14] Feller W. (1965): An Introduction to Probability Theory and its Applications. – New York: Wiley.
- [15] Pradlwater H.J., Schueller G.I. and Szekely G.S. (2002): Random eigenvalue problems for large systems. – Computers and Structures, vol.80, No.27-30, pp.2415-2424.
- [16] Kamiński M. (2013): The Stochastic Perturbation Method for Computational Mechanics. – Chichester: Wiley.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14fb9584-2184-45a3-91f9-b88aa6e1d18d