PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Room-temperature ionic liquids (RTILs) are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties. For this reason, they have been termed as designer solvents and, as such, they are particularly promising for liquid-liquid extraction, which has been quite intensely studied over the last decade. This paper concentrates on the recent liquid-liquid extraction studies involving ionic liquids, yet focusing strictly on the separation of n-butanol from model aqueous solutions. Such research is undertaken mainly with the intention of facilitating biological butanol production, which is usually carried out through the ABE fermentation process. So far, various sorts of RTILs have been tested for this purpose while mostly ternary liquid-liquid systems have been investigated. The industrial design of liquid-liquid extraction requires prior knowledge of the state of thermodynamic equilibrium and its relation to the process parameters. Such knowledge can be obtained by performing a series of extraction experiments and employing a certain mathematical model to approximate the equilibrium. There are at least a few models available but this paper concentrates primarily on the NRTL equation, which has proven to be one of the most accurate tools for correlating experimental equilibrium data. Thus, all the presented studies have been selected based on the accepted modeling method. The reader is also shown how the NRTL equation can be used to model liquid-liquid systems containing more than three components as it has been the authors’ recent area of expertise.
Rocznik
Strony
97--110
Opis fizyczny
Bibliogr. 57 poz., tab., rys.
Twórcy
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Molecular Engineering, 90-924 Łódź, Wólczańska 213, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Process Thermodynamics, 90-924 Łódź, Wólczańska 213, Poland
Bibliografia
  • 1. Abdehagh N., Tezel F.H., Thibault J., 2014. Separation techniques in butanol production. Challenges and developments. Biomass Bioenerg., 60, 222-246. DOI: 10.1016/j.biombioe.2013.10.003.
  • 2. Adhami L., Griggs B., Himebrook P., Taconi K., 2009. Liquid-liquid extraction of butanol from dilute aqueous solutions using soybean-derived biodiesel. J. Am. Oil Chem. Soc., 86 (11), 1123-1128. DOI: 10.1007/s11746- 009-1447-7.
  • 3. Brennecke J.F., Maginn E.J., 2001. Ionic liquids. innovative fluids for chemical processing. AIChE Journal, 47, 2384-2389. DOI: 10.1002/aic.690471102.
  • 4. Cheruku S.K., Banerjee T., 2012. Liquid-liquid equilibrium data for 1-ethyl-3-methylimidazolium acetatethiophene-diesel compound. experiments and correlations. J. Solution Chem., 41, 898-913. DOI:10.1007/s10953-012-9840-5.
  • 5. Davison B.H., Thompson J.E., 1993. Continuous direct solvent extraction of butanol in a fermenting fluidizedbed bioreactor with immobilized Clostridium acetobutylicum. Appl. Biochem. Biotechnol., 39-40, 415-426. DOI: 10.1007/BF02919007.
  • 6. Domańska U., Królikowski M., 2012. Extraction of butan-1-ol from water with ionic liquids at T = 308.15K. J. Chem. Thermodyn., 53, 108-113. DOI: 10.1016/j.jct.2012.04.017.
  • 7. Domańska U., Lukoshko E.V., 2015. Separation of pyridine from heptane with tricyanomethanide-based ionic liquids. Fluid Phase Equilib., 395, 9-14. DOI: 10.1016/j.fluid.2015.03.027.
  • 8. Dürre P., 2007. Biobutanol. An attractive biofuel. Biotechnol. J., 2, 1525-1534. DOI: 10.1002/biot.200700168.
  • 9. Earle M.J., Seddon K.R., 2000. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 72, 1391-1398. DOI: 10.1351/pac200072071391.
  • 10. Evans P.J., Wang H.Y., 1988. Enhancement of butanol formation by clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Appl. Environ. Microbiol., 54 (7), 1662-1667.
  • 11. Ezeji T.C., Qureshi N., Blaschek H.P., 2004. Butanol fermentation research. Upstream and downstream manipulations. Chem. Rec., 4, 305-314. DOI: 10.1002/tcr.20023.
  • 12. Ezeji T.C., Qureshi N., Blaschek H.P., 2007. Bioproduction of butanol from biomass. from genes to bioreactors. Curr. Opin. Biotech., 18, 220-227. DOI: 10.1016/j.copbio.2007.04.002.
  • 13. García V., Päkkilä J., Ojamo H., Muurinen E., Keiski R.L., 2011. Challenges in biobutanol production. How to improve the efficiency? Renew. Sust. Energ. Rev., 15, 964-980. DOI: 10.1016/j.rser.2010.11.008.
  • 14. Garcia-Chavez L.Y., Garsia C.M., Schuur B., de Haan A.B., 2012. Biobutanol recovery using nonfluorinated task-specific ionic liquids. Ind. Eng. Chem. Res., 51, 8293-8301. DOI: 10.1021/ie201855h.
  • 15. Green E.M., 2011. Fermentative production of butanol – the industrial perspective. Curr. Opin. Biotech., 22, 337-343. DOI: 10.1016/j.copbio.2011.02.004.
  • 16. Ha S.H., Mai N.L., Koo Y.M., 2010. Butanol recovery from aqueous solution into ionic liquids by liquid-liquid extraction. Process Biochem., 45, 1899-1903. DOI: 10.1016/j.procbio.2010.03.030.
  • 17. Haghnazarloo H., Lotfollahi M.N., Mahmoudi J., Asl A.H., 2013. Liquid-liquid equilibria for ternary systems of (ethylene glycol + toluene + heptane) at temperatures (303.15, 308.15, and 313.15) K and atmospheric pressure.
  • 18. Experimental results and correlation with UNIQUAC and NRTL models. J. Chem. Thermodyn., 60, 126-131. DOI: 10.1016/j.jct.2012.12.027.
  • 19. Haghtalab A., Paraj A., 2012. Computation of liquid-liquid equilibrium of organic-ionic liquid systems using NRTL, UNIQUAC and NRTL-NRF models. J. Mol. Liq., 171, 43-49. DOI: 10.1016/j.molliq.2012.04.008.
  • 20. Huang HJ, Ramaswamy S, Liu Y., 2014. Separation and purification of biobutanol during bioconversion of biomass. Sep. Purif. Technol., 132, 513-540. DOI: 10.1016/j.seppur.2014.06.013.
  • 21. Ishii S., Taya M., Kobayashi T., 1985. Production of butanol by Clostridium acetobutylicum in extractive fermentation system. J. Chem. Eng. Jpn., 18, 125-130. DOI: 10.1252/jcej.18.125.
  • 22. Ishizaki A., Michiwaki S., Crabbe E., Kobayashi G., Sonomoto K., Yoshino S., 1999. Extractive acetone-butanolethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). J. Biosci. Bioeng., 87, 352-356. DOI: 10.1016/S1389-1723(99)80044-9.
  • 23. Ji X, Held C, Sadowski G., 2012. Modeling imidazolium-based ionic liquids with ePC-SAFT. Fluid Phase Equilib., 335, 64-73. DOI: 10.1016/j.fluid.2012.05.029.
  • 24. Johnson K.E., 2007. What's an ionic liquid? The Electrochemical Society Interface.
  • 25. Jones D.T., Woods D.R., 1986. Acetone-butanol fermentation revisited. Microbiol. Rev., 50 (4), 484-524. PMCID. PMC373084.
  • 26. Kamiński W., Górak A., Kubiczek A., 2014. Modeling of liquid-liquid equilibrium in the quinary system of water, acetone, n-butanol, ethanol, and ionic liquid. Fluid Phase Equilib., 384, 114-121. DOI: 10.1016/j.fluid.2014.10.017.
  • 27. Klähn M., Stüber C., Seduraman A., Wu P., 2010. What determines the miscibility of ionic liquids with water?
  • 28. Identification of the underlying factors to enable a straightforward prediction. J. Phys. Chem. B., 114 (8), 2856-2868. DOI: 10.1021/jp1000557.
  • 29. Kosmulski M., Gustafsson J., Rosenholm J.B., 2004. Thermal stability of low temperature ionic liquids revisted. Thermochim. Acta, 412, 47-53. DOI: 10.1016/j.tca.2003.08.022.
  • 30. Kraemer K., Harwardt A., Bronneberg R., Marquardt W., 2011. Separation of butanol from acetone-butanolethanol fermentation by a hybrid extraction-distillation process. Comput. Chem. Eng., 35 (5), 949-963. DOI: 10.1016/j.compchemeng.2011.01.028.
  • 31. Królikowski M., 2016. Liquid−liquid extraction of p-xylene from their mixtures with alkanes using 1-butyl-1-methylmorpholinium tricyanomethanide and 1-butyl-3-methylimidazolium tricyanomethanide ionic liquids. Fluid Phase Equilib., 412, 107-114. DOI: 10.1016/j.fluid.2015.12.032.
  • 32. Kubiczek A., 2015. Investigation of the extraction equilibrium in the quinary system of water, acetone, butanol, ethanol and ionic liquid. PhD thesis, Lodz University of Technology, Poland.
  • 33. Kubiczek A., Kamiński W., 2013. Mutual solubility of selected ionic liquids and water in five-component systems containing acetone, butanol and ethanol. Chemical Engineering and Equipment, 52 (4), 351-352 (in Polish).
  • 34. Kubiczek A., Kamiński W., Górak A., 2016. Modeling of single- and multi-stage extraction in the system of water, acetone, butanol, ethanol and ionic liquid. Fluid Phase Equilib., 425, 365-373. DOI: 10.1016/j.fluid.2016.05.023.
  • 35. Kumar M., Gayen K., 2011. Developments in biobutanol production. New insights. Appl. Energy, 88, 1999-2012. DOI: 10.1016/j.apenergy.2010.12.055.
  • 36. Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Kim J., Jung K.S., 2008. Fermentative butanol production by Clostridia. Biotechnol. Bioeng., 101, 209-228. DOI: 10.1002/bit.22003.
  • 37. Liu W., Zhang Z., Ri Y., Xu X., Wang Y., 2016. Liquid−liquid equilibria for ternary mixtures of water + 2-propanol + 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids at 298.15K. Fluid
  • 38. Phase Equilib., 412, 205-210. DOI: 10.1016/j.fluid.2015.12.051.
  • 39. Liu Y., Xue H., 2012. OXO Market supply and demand forecast & investment economic analysis. Finance Research, 1 (2), 4-10.
  • 40. Lütke-Eversloh T., Bahl H., 2011. Metabolic engineering of Clostridium acetobutylicum. recent advances to improve butanol production. Curr. Opin. Biotech., 22, 1-14. DOI: 10.1016/ j.copbio.2011.01.011.
  • 41. Marciniak A., Wlazło M., Gawkowska J., 2016. Ternary (liquid + liquid) equilibria of {bis(trifluoromethylsulfonyl)-amide based ionic liquids + butan-1-ol + water}. J. Chem. Thermodyn., 94, 96-100. DOI: 10.1016/j.jct.2015.11.002.
  • 42. Matsumura M., Kataoka H., Sueki M., Araki K., 1988. Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification. Bioprocess Engineering, 3, 93-100.
  • 43. Mohsen-Nia M., Nekoei E., Mohammad Doulabi F.S., 2008. Ternary (liquid + liquid) equilibria for mixtures of (methanol + aniline + n-octane or n-dodecane) at T=298.15 K. J. Chem. Thermodyn., 40, 330-333. DOI: 10.1016/j.jct.2007.05.018.
  • 44. Natalense J., Zouain D., 2013. Technology roadmapping for renewable fuels. case of biobutanol in Brazil. J. Technol. Manag. Innov., 8 (4), 143-152. DOI: 10.4067/S0718-27242013000500013.
  • 45. Ni Y., Sun Z., 2009. Recent progress on industrial fermentative production of acetone-butanolethanol by Clostridium acetobutylicum in China. Appl. Microbiol. Biotechnol., 83, 415-423. DOI: 10.1007/s00253-009-2003-y.
  • 46. Qureshi N., Blaschek H.P., 2001. ABE production from corn. a recent economic evaluation. J. Ind. Microbiol. Biotechnol., 27, 292-297. DOI: 10.1038/sj.jim.7000123.
  • 47. Qureshi N., Blaschek H.P., 2006. Butanol production from agricultural biomass. In K. Shetty, G. Paliyath, Pometto, R.E. Levin (Eds.), Food biotechnology. 2nd ed. (pp. 525-549). New York. CRC Press, Taylor & Francis.
  • 48. Rabari D., Banerjee T., 2013. Butanol and n-propanol recovery using a low density phosphonium based ionic liquid at T = 298.15K and p = 1atm. Fluid Phase Equilib., 355, 26-33. DOI: 10.1016/j.fluid.2013.06.047.
  • 49. Ramey D.E., 2007. Butanol. The other alternative fuel. In Eaglesham A. and Hardy R.W.F. (Eds.), Agricultural Biofuels. Technology, Sustainability and Profitability. NABC Report 19 (pp. 137-147). Ithaca, NY. National Agricultural Biotechnology Council 2007.
  • 50. Roffler S.R., Blanch H.W., Wilke C.R., 1988. In situ extractive fermentation of acetone and butanol. Biotechnol. Bioeng., 31 (2), 135-143. DOI: 10.1002/bit.260310207.
  • 51. Simoni L.D., Chapeaux A., Brennecke J.F., Stadtherr M.A., 2010. Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. Comput. Chem. Eng., 34, 1406-1412. DOI: 10.1016/j.compchemeng.2010.02.020. Siwale L., Kristóf L., Torok A., Bereczky A., Mbarawa M., Penninger A., Kolesnikov A., 2013. Performance characteristics of n-butanol-diesel fuel blend fired in a turbo-charged compression ignition engine. J. Power Energy Eng., 1, 77-83. DOI: 10.4236/jpee.2013.15013.
  • 52. Sowmiah S., Srinivasadesikan V., Tseng M.C., Chu Y.H., 2009. On the chemical stabilities of ionic liquids. Molecules, 14, 3780-3813. DOI: 10.3390/molecules14093780.
  • 53. Stoffers M., Górak A., 2013. Continuous multi-stage extraction of n-butanol from aqueous solutions with 1-hexyl-3-methylimidazolium tetracyanoborate. Sep. Purif. Technol., 120, 415-422. DOI: 10.1016/j.seppur.2013.10.016.
  • 54. Stoffers M, Heitmann S, Lutze P, Górak A., 2013. Integrated processing for the separation of biobutanol. Part A. experimental investigation and process modelling. Green Process. Synth., 101-120. DOI: 10.1515/gps-2013-0009.
  • 55. Vane LM. ,2008. Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels, Bioprod. Biorefin., 2, 553-588. DOI: 10.1002/bbb.108.
  • 56. Wilkes J.S., Zaworotko M.J., 1992. Air and water stable 1-Ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun., 965-967. DOI: 10.1039/C39920000965.
  • 57. Zhang W., Hou K., Mi G., Chen N., 2010. Liquid-liquid equilibria of the ternary system thiophene + octane + dimethyl sulfoxide at several temperatures. Appl. Biochem. Biotechnol., 160, 516-522. DOI: 10.1007/s12010- 008-8382-1.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14f9847b-8849-4bed-9334-6cb2eb84372f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.