Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The fouling presence on the heat transfer surfaces, both on the waterside and the steam side of the steam power plants heat recovery exchangers usually leads to the loss of their heat transfer capacities. This loss appears owing to the high value of heat resistance of fouling. Furthermore, these deposits are most often formed with irregularities in the surface layers. These textures are usually characterized by a varied, often stochastic and difficult to define, geometric structures. The most common measure of their inequalities is the roughness parameter describing the surface geometry. The fouling surface layer texture can, on one hand, cause enhancement of the heat transfer process, but on the other hand, it may contribute to an additional increase in thermal degradation of the heat exchanger. Many experimental studies have shown that the greater the unevenness of the heat transfer surface on the waterside of a given heat transfer device, the smaller increase in the thermal resistance of the impurities over time, thereby increasing the amount of heat transferred. It should be emphasized, however, that the rise in roughness results in an increase in the heat transfer coefficient, while simultaneously intensifying the flow resistance of the working medium. Taking into account the heat transfer surface by steam side, the increase in the roughness promotes the formation of a thicker condensate layer, thus impairing the condensate drainage organization. It can be explained by the fact that deposits settle in a sort of quasi-rib effect, although with undefined ribbed grid, it may lead to the overflow of inter-finned passages. The article shows the previously mentioned phenomena and also presents the descriptive quantities for the fouling surface layer texture, based on the results of the author’s own experimental research.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
55--60
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Gdynia Maritime University, Faculty of Marine Engineering Morska Street 83, 81-225 Gdynia, Poland tel.: +48586901549, fax: +48586901399
Bibliografia
- [1] Adamczak, S., Ocena chropowatości i falistości powierzchni, Zasady i warunki przeprowa-dzania pomiarów, Mechanik, Nr 3, s. 180-183, 2006.
- [2] Adamczak, S., Ocena chropowatości i falistości powierzchni, Informacje podstawowe, Mechanik, Nr 5-6, s. 492-495, 2005.
- [3] Brahim, F., Augustin, W., Bohnet, M., Numerical simulation of the fouling structured heat transfer surfaces, ECI Conference on Heat Exchanger Fouling and Cleaning, Fundamentals and Applications, pp. 121-129, Santa Fe 2003.
- [4] Butrymowicz, D., Hajduk, T., Zagadnienia degradacji termicznej wymienników ciepła, Technika chłodnicza i klimatyzacyjna, Rok XIII, Nr 3(121), s. 111-117, 2006.
- [5] Butrymowicz, D., Trela, M., Intensyfikacja wnikania ciepła w poziomych skraplaczach płaszczowo-rurowych, Technika chłodnicza i klimatyzacyjna, Rok VI, Nr 3(43), s. 92-99, 1999.
- [6] Förster, M., Bohnet, M., Modification of the interface crystal/heat transfer surface to reduce heat exchanger fouling, (ed.) Müller-Steinhagen, H., Heat Exchanger Fouling, Fundamental Approaches & Technical Solutions, pp. 27-34, Essen 2002.
- [7] Hajduk, T., Identification of fouling deposited on the heat transfer surfaces of the steam power plants heat exchangers, Journal of KONES Powertrain and Transport, Vol. 23, No. 4, pp. 135-142, 2016.
- [8] Hobler, T., Ruch ciepła i wymienniki, WNT, Warszawa 1986.
- [9] Karabelas, A. J., Scale formation in tubular heat exchangers – research priorites, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, pp. 73-81, Piza 2001.
- [10] Kazi, S. N., Duffy, G. G., Chen, X. D., A study of fouling and fouling mitigation on smooth and roughened metal surfaces and a polymeric material, (ed.) Müller-Steinhagen, H., Heat Exchanger Fouling, Fundamental Approaches & Technical Solutions, pp. 65-72, Essen 2002.
- [11] Knudsen, J. G., Fouling in Heat Exchangers, Overview and Summary, (ed.) Hewitt, G.F., Handbook of heat exchanger design, Begell House Inc., pp. 3.17.1.1-7.5, New York 1992.
- [12] Kukulka, D. J., Devgun, M., Fouling surface finish evaluation, Applied Thermal Engineering, Vol. 27, pp. 1165-1172, 2007.
- [13] Michiejew, M., Zasady wymiany ciepła, PWN, Warszawa 1953.
- [14] Mwaba, M. G., Rindt, C. C. M., Vorstman, M. A. G., van Steenhoven A. A., Calcium sulfate deposition on a heated plate and removal characteristics, (ed.) Müller-Steinhagen, H., Heat Exchanger Fouling, Fundamental Approaches & Technical Solutions, pp. 57-63, Essen 2002.
- [15] Nowicki, B., Chropowatość i falistość powierzchni, WNT, Warszawa 1991.
- [16] Panicz, A., Chropowatość powierzchni – co nowego?, PAK, Nr 5, s. 39-41, 2000.
- [17] Perrakis, M., Andritsos, N., CaCO3 scaling under constant heat flux, (ed.) Bott, T., Understanding Heat Exchanger Fouling and Its Mitigation, pp. 185-192, New York 1999.
- [18] Santorski, J. K., Podnoszenie tribologicznych właściwości materiałów przez obróbkę cieplną i powierzchniową, Instytut Mechaniki Precyzyjnej, Warszawa 2003.
- [19] Stefański, W., Wpływ zwiększenia chropowatości i zmniejszenia średnicy rur na opory hydrauliczne, Instal, Nr 9, s. 66-74, 2006.
- [20] Xu, Z. M., Wang, J. G., Chen, F., A new predictive model for particulate fouling, (ed.) Bott, T., Understanding Heat Exchanger Fouling and Its Mitigation, pp. 185-192, New York 1999.
- [21] Webb, R L., The Use of Enhanced Surface Geometries in Condensers: An Overview, (eds) Marto, P. J., Nunn, R .H., Power Condenser Heat Transfer Technology, pp. 353-366, 1981.
- [22] DIN-EN ISO 4288, GPS – Surface texture: Profile method. Rules and procedures for assessment of surface texture, 1998.
- [23] Program komputerowy Mitutoyo, wytwórca Mitutoyo, wersja 3.20.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14f4f7ec-25db-4fcf-95c2-949022779ba9