PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of CFD to modeling of squeeze mode magnetorheological dampers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The so-called squeeze flow involves a magnetorheological (MR) fluid sandwiched between two planar surfaces setting up a flow channel. The height of the channel varies according to a prescribed displacement or force profile. When exposed to a magnetic field of sufficient strength MR fluids develop a yield stress. In squeeze-mode devices the yield stress varies with both the magnetic field magnitude and the channel height. In this paper an unsteady flow model of an MR fluid in squeeze mode is proposed. The model is developed in Ansys Fluent R16. The MR material flow model is based on the apparent viscosity approach. In order to investigate the material's behaviour the authors prepared a model of an idealized squeeze-mode damper in which the fluid flow is enforced by varying the height of the channel. Using mesh animation, the model plate is excited, and as the mesh moves, the fluid is squeezed out of the gap. In the simulations the model is subjected to a range of displacement inputs of frequencies from 10 to 20 Hz, and local yield stress levels up to 30 kPa. The results are presented in the form of time histories of the normal force on the squeezing plate and loops of force vs. displacement (velocity).
Rocznik
Strony
129--134
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
  • BWI Group, Technical Center Kraków, ul. Podgórki Tynieckie 2, 30-399 Cracow, Poland
  • Department of Automation and Information Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland
autor
  • Department of Process Control, AGH University of Science and Technology, al. Mickiewicza 30-059 Cracow
Bibliografia
  • 1. Case D., Taheri, B., Richer, E. (2013), Multiphysics modeling of magnetorheological dampers, The International Journal of Multiphysics, Vol. 7, No. 1, 61-76.
  • 2. Chen S. M., Bullough W. A., Ellam D. J. (2007), Examination of through flow in a radial ESF clutch, Journal of Intelligent Material Systems and Structures, Vol. 12, 1175–1179.
  • 3. de Vicente, Juan, et al. (2011), Squeeze flow magnetorheology, Journal of Rheology (1978-present), Vol. 55, No. 4, 753-779.
  • 4. Esmonde, H., H. See, and M. V. Swain (2009), Modelling of ER squeeze films at low amplitude oscillations, Journal of NonNewtonian Fluid Mechanics, Vol. 161, No. 1, 101-108.
  • 5. Farjoud, A., Ahmadian, M., Mahmoodi, N., Zhang, X., & Craft, M. (2011), Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows, Smart Materials and Structures, Vol. 20, No. 8, 085013.
  • 6. Gołdasz J., Sapiński B. (2015), Insight into magnetorheological shock absorbers, Springer Publishing, Heidelberg.
  • 7. Gstottenbauer, N., Kainz, A., Manhartsgruber, B., Scheidl, R. (2008), Experimental and numerical studies of squeeze-mode behaviour of magnetic fluid, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 22, No. 12, 2395-2407.
  • 8. Jolly M., Bender J. W., Carlson J. D. (1996), Properties and applications of magnetorheological fluids, Proceedings of the SPIE Conference of the International Society of Optical Engineers, Vol. 3327, 262–275.
  • 9. Jolly M., Carlson J. D. (1996), Controllable squeeze-film damping using magnetorheological fluids, Proceedings of the 5th International Conference on New Actuators, Bremen, 333–336.
  • 10. Kieburg Ch. (2010), MR Fluid Basonetic 4035, BASF Technical Information.
  • 11. Sapiński, B., Szczęch, M. (2013), CFD model of a magnetorheological fluid in squeeze mode, acta mechanica et automatica, Vol. 7, No. 3, 180-183.
  • 12. Sproston J. L., Rigby S. G., Wiliams E. W., Stanway R. (1994), A numerical simulation of electrorheological fluids in oscillatory compressive squeeze-flow, Journal of Physics D: Applied Physics, Vol. 2, No. 27, 338–340.
  • 13. Tannehill J. C., Anderson D. A., Pletcher R. H. (1996), Computational fluid mechanics and heat transfer. Taylor and Francis, New York.
  • 14. Zhang X. J., Farjoud A., Ahmadian M, Guo K. H., Craft M. (2011), Dynamic testing and modeling of an MR squeeze mount, Journal of Intelligent Material Systems and Structures, Vol. 22, No. 15, 1717– 1728.
  • 15. Zheng, J., Li, Z., Koo, J., Wang, J. (2014), Magnetic circuit design and multiphysics analysis of a novel MR damper for applications under high velocity. Advances in Mechanical Engineering, Vol. 2014, 402501.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14e97d65-a3fe-4015-bccf-dfd6dbbc69ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.