PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A variational analysis of the equilibrium turbulent closure models of a dry granular densified motion with weak turbulent intensity

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A variational principle is proposed to derive the equilibrium expressions of the turbulent closure models of an isothermal dry granular dense matter in weak turbulent motions. It is demonstrated that the equilibrium equations and the natural boundary conditions coincide with those derived by the thermodynamic analysis (Fang and Wu, in Acta Geotechnica, in press). The current work serves as a supplementary variational verification of the turbulent closure models proposed in Fang and Wu (in Acta Geotechnica, in press).
Rocznik
Strony
467--478
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Department of Civil Engineering National Cheng Kung University No. 1, University Road Tainan City 701, Taiwan
Bibliografia
  • 1. I.S. Aranson, L.S. Tsimring, Granular Patterns, Oxford University Press, Oxford New York, 2009.
  • 2. A. Mehta, Granular Physics, Cambridge University Press, New York, 2007.
  • 3. GDR MiDi, On dense granular flows, Eur. Phys. J. E., 14, 341–365, 2004.
  • 4. K.J. Rao, P.R. Nott, Introduction to Granular Flows, Cambridge University Press, London, New York,2008.
  • 5. T. Pöschel, N.V. Brilliantov, Granular gas dynamics, [in:] Lecture Notes in Physics (Book 624), Springer, New York, 2013.
  • 6. M. Ausloos, R. Lambiotte, K. Trojan, Z. Koza, Z, M. Pekala, Granular matter: A wonderful world of clusters in far-from-equilibrium systems, Physica A, 357, 337–349, 2005.
  • 7. G.K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge New York, 1993.
  • 8. J.O. Hinze, Turbulence, McGraw-Hill, New York, 1975.
  • 9. J.L. Lumley, H. Tennekes, A First Course in Turbulence, MIT Press, Cambridge, 1972.
  • 10. A. Tsinober, An Informal Conceptual Introduction to Turbulence, Springer, Heidelberg, 2009.
  • 11. G. Ahmadi, M. Shahinpoor, Towards a turbulent modeling of rapid flow of granular materials, Powder Technol., 35, 241–248, 1983.
  • 12. G. Ahmadi, A turbulence model for rapid flows of granular materials. Part I. Basic theory, Powder Technol., 44, 261–268, 1985.
  • 13. D. Ma, G. Ahmadi, A turbulence model for rapid flows of granular materials. Part II. Simple shear flows, Powder Technol., 44, 269–279, 1985.
  • 14. I. Luca, C. Fang, K. Hutter, A thermodynamic model of turbulent motions in a granular material, Continuum Mech. Thermodyn., 16, 363–390, 2004.
  • 15. Y. Wang, K. Hutter, A constitutive theory of fluid-saturated granular materials and its application in gravitational flows, Rheol. Acta, 38, 214–223, 1999.
  • 16. J.T. Jenkins, S.B. Savage, A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles, J. Fluid Mech., 130, 187–202, 1983.
  • 17. P.C. Johnson, R. Jackson, Frictional-collisional constitutive relations for granular materials, with applications to plane shearing, J. Fluid Mech., 176, 67–93, 1987.
  • 18. K.K. Lun, S.B. Savage, D.J. Jeffery, N. Chepurny, Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field, J. Fluid Mech., 140, 223–256, 1984.
  • 19. M.W. Richman, Boundary conditions based upon a modified Maxwellian velocity distribution for flows if identical, smooth, nearly elastic spheres, Acta Mech., 75, 227–240, 1988.
  • 20. M.W. Richman, R.P. Marciniec, Gravity-driven granular flows of smooth, inelastic spheres down bumpy inclines, J. Appl. Mech., 57, 1036–1043, 1990.
  • 21. S.B. Savage, D.J. Jeffery, The stress tensor in a granular flow at high shear rates, J. Fluid Mech. 110, 255–272, 1981.
  • 22. C. Fang,W.Wu, On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains: part I. Equilibrium turbulence closure models, Acta Geotech., 9, 5, 725–737, 2014.
  • 23. C. Fang,W.Wu, On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains: part II. Complete closure models and numerical simulations, Acta Geotech., 9, 5, 739–752, 2014.
  • 24. A. Sadiki, K. Hutter, On the frame dependence and form invariance of the transport equations for the Reynolds stress tensor and the turbulent heat flux vector: its consequences on closure models in turbulence modeling, Continuum Mech. Thermodyn., 8, 341–349, 1996.
  • 25. T.H. Shih, J. Zhu, J.L. Lumley, A realizable Reynolds’ stress algebraic equation model, NASA TM-105993, 1993.
  • 26. T. Rung, F. Thiele, S. Fu, On the realizability of non-linear stress-strain relationships for Reynolds-stress closures, Flow Turbul. Combust., 60, 333–359, 1999.
  • 27. K. Hutter, K. Jöhnk, Continuum Methods of Physical Modeling, Springer, Berlin, Heidelberg, 2004.
  • 28. I. Müller, Thermodynamics, Pitmann, New York, 1985.
  • 29. I. Goldhirsch, Introduction to granular temperature, Powder Technol. 182, 130–136, 2008.
  • 30. D. Vescovi, C. di Prisco, D. Berzi, From solid to granular gases: the steady state for granular materials, Int. J. Numer. Anal. Meth. Geomech., 37, 2937–2951, 2013.
  • 31. C. Fang, Gravity-driven dry granular slow flows down an inclined moving plane: a comparative study between two concepts of the evolution of porosity, Rheol. Acta, 48, 971–992, 2009.
  • 32. K.C. Valanis, A gradient theory for internal variables, Acta Mech., 116, 1–14, 1996.
  • 33. B. van Brunt, The Calculus of Variation, Springer, New York, 2004.
  • 34. J.H. He, A generalized variational principle in micromorphic thermoelasticity, Mech. Res. Commun., 32, 93–98, 2005.
  • 35. J.H. He, Coupled variational principles of piezoelasticity, Int. J. Engng. Sci., 39, 323–341, 2001.
  • 36. A.A. Milyutin, N.P. Osmolovskii, Calculus of Variations and Optimal Control, Translations of Mathematical Monographs 180, American Mathematical Society, 1990.
  • 37. G. Leitmann, The Calculus of Variations and Optimal Control: An Introduction, Plenum Press, New York, London, 1981.
  • 38. M. Mosconi, Mixed variational formulations for continua with microstructure, Int. J. Solids Struct., 39, 4181–4195, 2002.
  • 39. S. Sieniutycz, H. Farkas, Variational and Extremum Principles in Macroscopic Systems, Elsevier Science, Oxford, UK, 2005.
  • 40. C. Fang, Y. Wang, K. Hutter, A variational principle for the revised Goodman–Cowin theory with internal length, Arch. Appl. Mech., 76, 119–131, 2006.
  • 41. M.A. Goodman, S.C. Cowin, Two problems in the gravity flow of granular materials, J. Fluid Mech., 45, 321–339, 1971.
  • 42. J.T. Jenkins, Static equilibrium of granular materials, J. Appl. Mech., 42, 603–606, 1975.
  • 43. B. Svendsen, K. Hutter, On the thermodynamics of a mixture of isotropic materials with constraints, Int. J. Engng. Sci., 33, 14, 2021–2054, 1999.
  • 44. R.C. Daniel, A.P. Poloski, A.E. Sáez, A continuum constitutive model for cohesionless granular flows, Chem. Eng. Sci., 62, 1343–1350, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14e66788-1495-427c-8eae-9f3e41150238
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.