PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the periodic thermal contact between exhaust valve and its seat in an internal combustion engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The focus of internal combustion engine development for urban vehicles is shifting towards reducing materials by making them lighter. In order to maintain thermal and flow levels, a model was developed to study the thermal behavior of valve seats during periodic contact, which can also help improve engine performance and fuel efficiency. The model, composed of two cylindrical bars in periodic contact, takes into account the evolution and topography of the contact surface. The model's performance was evaluated through various experimental studies and showed a maximum difference of 5.05% with experimental values, in good agreement with previous literature. The results showed that heat flux increases with increasing contact frequency and thermal diffusivity affects conductive transfer. This model can be used by manufacturers to evaluate cylinder head temperature and by the automotive industry to improve heat transfer in engines.
Rocznik
Strony
art. no. 162911
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • Mechanics of Materials and Plant Maintenance Research Laboratory (LR3MI), Badji Mokhtar University, Annaba, Algérie
  • Mechanics of Materials and Plant Maintenance Research Laboratory (LR3MI), Badji Mokhtar University, Annaba, Algérie
  • Energy Systems Technology Laboratory (LTSE), Higher National School of Technology and Engineering, Annaba, Algérie
  • Faculty of Sciences and Technologies, Higher School of Industrial Technology, Annaba, Algérie
autor
  • Energy Systems Technology Laboratory (LTSE), Higher National School of Technology and Engineering, Annaba, Algérie
autor
  • Mechanics of Materials and Plant Maintenance Research Laboratory (LR3MI), Badji Mokhtar University, Annaba, Algérie
Bibliografia
  • 1. Ambrozik A, Ambrozik T, Łagowski P. Fuel impact on emissions of harmful components of the exhaust gas from the CI engine during cold start-up. Eksploatacja i Niezawodnosc - Maintanance and Reliability 2014; 17(1): 95–99, https://doi.org/10.17531/ein.2015.1.13.
  • 2. Azzouz S, Bourouga B, Chaoui K. Transfert thermique a travers une interface de contact intermittent en regime periodique etabli. Revue Synthèse 2007: 102–108.
  • 3. Bourouga B, Goizet V, Bardon J P. Modèle predictif de résistance thermique de contact dynamique adapté au cas de l’interface pièce–outil de forgeage. International Journal of Heat and Mass Transfer 2003; 46(3): 565–576, https://doi.org/10.1016/s0017-9310(02)00265-x.
  • 4. Broatch A, Olmeda P, Margot X, Escalona J. New approach to study the heat transfer in internal combustion engines by 3D modelling. International Journal of Thermal Sciences 2019; 138: 405–415, https://doi.org/10.1016/j.ijthermalsci.2019.01.006.
  • 5. Cerdoun M, Khalfallah S, Beniaiche A, Carcasci C. Investigations on the heat transfer within intake and exhaust valves at various engine speeds. International Journal of Heat and Mass Transfer 2020. doi:10.1016/j.ijheatmasstransfer.2019.119005, https://doi.org/10.1016/j.ijheatmasstransfer.2019.119005.
  • 6. Cooper M G, Mikic B B, Yovanovich M M. Thermal contact conductance. International Journal of Heat and Mass Transfer 1969; 12(3): 279–300, https://doi.org/10.1016/0017-9310(69)90011-8.
  • 7. Couedel D, Danes F, Bardon J P. Experimental study and analysis of heat transfer in a valve-seat periodic contact in an internal combustion engine. 1991.
  • 8. Das S K, Sahoo R K. Second law analysis of a cyclic regenerator in presence of longitudinal heat conduction in matrix. Heat and Mass Transfer/Waerme- und Stoffuebertragung 1999; 34(5): 395–403, https://doi.org/10.1007/s002310050275.
  • 9. Dodd N C, Moses W M. Heat transfer across aluminum/stainless steel surfaces in periodic contact. AIAA 23rd Thermophysics, Plasmadynamics and Lasers Conference, 1988 1998. doi:10.2514/6.1988-2646, https://doi.org/10.2514/6.1988-2646.
  • 10. Dongmei Bi, Huanxin Chen Y T. Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures. American Journal of Applied Sciences 2012; 5(11): 1566–1571, https://doi.org/10.3844/ajassp.2008.1566.1571.
  • 11. Fan S, Barber J R. Solution of periodic heating problems by the transfer matrix method. International Journal of Heat and Mass Transfer 2002; 45(5): 1155–1158, https://doi.org/10.1016/s0017-9310(01)00216-2.
  • 12. Flach G P, Ozisik M N. Inverse heat conduction problem of periodically contacting surfaces. Journal of Heat Transfer 1988; 110(4): 821–829, https://doi.org/10.1115/1.3250580.
  • 13. Fonseca L, Olmeda P, Novella R, Valle R M. Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview. Archives of Computational Methods in Engineering 2020; 27(5): 1661–1679, https://doi.org/10.1007/s11831-019-09361-9.
  • 14. Goudarzi K, Moosaei A, Gharaati M. Applying artificial neural networks ( ANN ) to the estimation of thermal contact conductance in the exhaust valve of internal combustion engine. Applied Thermal Engineering 2015; 87: 688–697, https://doi.org/10.1016/j.applthermaleng.2015.05.060.
  • 15. Goudarzi K, Shojaeefard M H. Experimental study of the heat transfer across periodically contacting surfaces. Journal of Mechanics 2009; 25(3): 307–311, https://doi.org/10.1017/S1727719100002768.
  • 16. Goudarzi K, Shojaefard M H, Fazelpour M. Effect of contact pressure and frequency on contact heat transfer between exhaust valve and its seat. International Journal of Engineering, Transactions B: Applications 2008; 21(4): 401–408.
  • 17. Hahne E, Hornberger M. Experience with a solar heating ATES system for a university building. SAE Technical Papers 1992. doi:10.4271/929050, https://doi.org/10.4271/929050.
  • 18. Howard J R. An experimental study of heat transfer through periodically contacting surfaces. International Journal of Heat and Mass Transfer 1976; 19(4): 367–372, https://doi.org/10.1016/0017-9310(76)90092-2.
  • 19. Howard J R, Sutton A E. An analogue study of heat transfer through periodically contacting surfaces. International Journal of Heat and Mass Transfer 1970; 13(1): 173–183, https://doi.org/10.1016/0017-9310(70)90033-5.
  • 20. Huang C ‐H, Ju T ‐M. An inverse problem of simultaneously estimating contact conductance and heat transfer coefficient of exhaust gases between engine’s exhaust valve and seat. International Journal for Numerical Methods in Engineering 1995; 38(5): 735–754, https://doi.org/10.1002/nme.1620380503.
  • 21. Kruczyński S, Ślęzak M, Gis W, Orliński P. Evaluation of the impact of combustion hydrogen addition on operating properties of self-ignition engine | Ocena wpływu spalania dodatku wodoru na własności eksploatacyjne silnika o zapłonie samoczynnym. Eksploatacja i Niezawodnosc - Maintanance and Reliability 2016; 18(3): 343–347, https://doi.org/10.17531/ein.2016.3.4.
  • 22. Kuranc A. The ecological aspect of a cold and hot starting of a spark ignition combustion engine. Eksploatacja i Niezawodnosc - Maintanance and Reliability 2008; 38(2): 40–44.
  • 23. Kwasniowski S. Krzysztof Jamroziak Pawel Zajac Analysis of heat exchange in the powertrain of a road vehicle with a retarder Analiza wymiany ciepła w układzie napędowym pojazdu drogowego z retarderem. Eksploatacja i Niezawodnosc - Maintanance and Reliability 2019; 21(4): 577–584. https://doi.org/10.17531/ein.2019.4.6
  • 24. Lewis R, Dwyer-Joyce R S, Josey G. Investigation of Wear Mechanisms Occurring in Passenger Car Diesel Engine Inlet Valves and Seat Inserts. 1999. https://doi.org/10.4271/1999-01-1216
  • 25. Mascarenhas L A B, Gomes J de O, Barbosa C et al. Analysis of the tribological behaviour of an automotive engine exhaust valve and a valve seat using a newly developed high temperature workbench. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2015; 37(6): 1743–1749, https://doi.org/10.1007/s40430-015-0419-0.
  • 26. Mikhailov M D. Quasi-steady state temperature distribution in finite regions with periodically-varying boundary conditions. International Journal of Heat and Mass Transfer 1974. https://doi.org/10.1016/0017-9310(74)90057-X
  • 27. Mikić B B. Thermal contact conductance; theoretical considerations. International Journal of Heat and Mass Transfer 1974; 17(2): 205–214, https://doi.org/10.1016/0017-9310(74)90082-9.
  • 28. Moses W M, Johnson R R. Experimental results for the quasisteady heat transfer through periodically contacting surfaces. Journal of Thermophysics and Heat Transfer 1989; 3(4): 474–476, https://doi.org/10.2514/3.28770.
  • 29. Moses W M, Johnson R R. Experimental results for the quasi-steady heat transfer through periodically contacting surfaces. Journal of Thermophysics and Heat Transfer 1987; 3(4): 474–476, https://doi.org/10.2514/6.1987-1608.
  • 30. Orlande H R B, Özișik M N. Inverse problem of estimating interface conductance between periodically contacting surfaces. Journal of Thermophysics and Heat Transfer 1993; 7(2): 319–325, https://doi.org/10.2514/3.422.
  • 31. Parikh M, Shah S, Vaghela H, Parwani A K. A comprehensive experimental and numerical estimation of thermal contact conductance. International Journal of Thermal Sciences 2022. doi:10.1016/j.ijthermalsci.2021.107285, https://doi.org/10.1016/j.ijthermalsci.2021.107285.
  • 32. Popov V M, Chernyshov D, Karpova A A. Contact heat conduction through periodically contacting rods. Journal of Engineering Physics and Thermophysics 2008; 81(5): 1021–1032, https://doi.org/10.1007/s10891-009-0108-x.
  • 33. Reed J R, Mullineux G. Quasi-steady state solution of periodically varying phenomena. International Journal of Heat and Mass Transfer 1973. doi:10.1016/0017-9310(73)90103-8, https://doi.org/10.1016/0017-9310(73)90103-8.
  • 34. Shojaeefard M H, Goudarzi K, Mazidi M S. Inverse Heat Transfer Problem of Thermal Contact Conductance Estimation in Periodically Contacting Surfaces. Journal of Thermal Science 2009; 18(2): 150–159, https://doi.org/10.1007/s11630-009-0150-1.
  • 35. Shojaeefard M H, Mazidi M S, Mousapour V K. The estimation of time-varying thermal contact conductance between two fixed contacting surfaces. 2013; 19(2): 167–171. https://doi.org/10.5755/j01.mech.19.2.4150
  • 36. Shojaeefard M H, Khaneshan V M, Sharfabadi M M. The investigation of the valve spring stiffness influence on the thermal contact conductance between the exhaust valve and its seat. Heat Transfer Engineering 2015; 36(1): 58–67, https://doi.org/10.1080/01457632.2014.906280.
  • 37. Shojaeefard M H, Mazidi M S, Shojaeefard H, Mazidi M. Application of inverse method to the problem of thermal contact conductance estimation using simulated measured temperatures. International Journal of Heat and Technology 2011; 29(1): 135–141.
  • 38. Shojaefard M H, Goudarzi K. The numerical estimation of thermal contact resistance in contacting surfaces. American Journal of Applied Sciences 2008; 5(11): 1566–1571, https://doi.org/10.3844/ajassp.2008.1566.1571.
  • 39. Shojaefard M H, Noorpoor A R, Bozchaloe D A, Ghaffarpour M. Transient thermal analysis of engine exhaust valve. Numerical Heat Transfer; Part A: Applications 2005; 48(7): 627–644, https://doi.org/10.1080/10407780590959943.
  • 40. Shojaefard M H, Noorpoor A R, Ghaffarpour M, Mohammadi F. Shojaefard, M. H., Noorpoor, A. R., Ghaffarpour, M., & Mohammadi, F. (2007). Analysis Heat Flow Between Seat and Valve of ICE. 4(9), 700–708.Analysis Heat Flow Between Seat and Valve of ICE. 2007; 4(9): 700–708.
  • 41. Siddappa P G, Tariq A. Experimental estimation of thermal contact conductance across pressed copper–copper contacts at cryogenic-temperatures. Applied Thermal Engineering 2023; 219: 119412, https://doi.org/10.1016/J.APPLTHERMALENG.2022.119412.
  • 42. Sridhar M R, Yovanovich M M. Elastoplastic Contact Conductance Model for Isotropic Conforming Rough Surfaces and Comparison With Experiments. Journal of Heat Transfer 1996; 118(1): 3–9, https://doi.org/10.1115/1.2824065.
  • 43. Sridhar M R, Yovanovich M M. Critical review of elastic and plastic thermal contact conductance models and comparison with experiment. AIAA 28th Thermophysics Conference, 1993, Reston, Virigina, American Institute of Aeronautics and Astronautics: 1993; 8(4): 633–640, https://doi.org/10.2514/6.1993-2776.
  • 44. Tariq A, Asif M. Experimental investigation of thermal contact conductance for nominally flat metallic contact. Heat and Mass Transfer 2016; 52(2): 291–307, https://doi.org/10.1007/s00231-015-1551-1.
  • 45. Vick B, Özişik M N. Quasi-Steady-state temperature distribution in periodically contacting finite regions. Journal of Heat Transfer 1981; 103(4): 739–744, https://doi.org/10.1115/1.3244535.
  • 46. Wang H. Contact thermique périodique : un modèle quadripolaire et une expérience periodic thermal contact: a quadrupole model and an experiment. International Journal of Thermal Sciences 2002; 41(2): 125–135. https://doi.org/10.1016/S1290-0729(01)01290-X
  • 47. Wendeker M, Godula A, Eksploatacyjnej B et al. Research on variability in control real-life operations. Eksploatacja i Niezawodnosc - Maintanance and Reliability 2002; (4): 12–23.
  • 48. Yousif I E, Othman T S, Hasan M Z. Investigation of Thermal Behaviour of (Steel Alloy (44K2), Titanium Aluminide, SiO2, Al2O3, ZrO2) Materials on Internal Combustion Engine Valves. International Journal of Mechanical Engineering and Robotics Research 2022; 11(8): 583–591, https://doi.org/10.18178/ijmerr.11.8.583-591.
  • 49. Yovanovich M M. Recent Developments in Thermal Contact, Gap and Joint Conductance Theories and Experiment. Heat Transfer, Proceedings of the International Heat Transfer Conference 1986; 1: 35–45, https://doi.org/10.1615/ihtc8.2260.
  • 50. Yovanovich M M. New contact and gap correlations for conforming rough surfaces. In AIAA 16th Thermophysics Coference , (AIAA Paper No. 81-1164) (ed): Palo Alto, CA: 1981.
  • 51. Yuen W Y D. Heat conduction in sliding solids. International Journal of Heat and Mass Transfer 1988; 31(3): 637–646, https://doi.org/10.1016/0017-9310(88)90045-2.
  • 52. Zaja̧c G, Wȩgrzyn A. Analysis of work parameters changes of diesel engine powered with diesel fuel and faee blends. Eksploatacja i Niezawodnosc - Maintanance and Reliability 2008; 38(2): 17–24.
  • 53. Zhao J, Wang A, Yang C. Prediction of thermal contact conductance based on the statistics of the roughness profile characteristics. International Journal of Heat and Mass Transfer 2005; 48(5): 974–985, https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14e636ef-9196-4875-9503-20deacda6978
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.